
Graphics Systems and Models

Chapter 1

• Introduction:
– Computer Graphics

• What is it?

– Overview of what we will cover:
• A graphics overview

• Graphics Theory

• A graphics Software System: OpenGL

– Our approach will be top-down.
• We want you to start writing application programs

that generate graphical output as quickly as
possible

CS 480/680 Chapter 1 -- Graphics Systems and Models 2

1. Applications of Computer Graphics

– The development of Computer Graphics has been
driven by the needs of the user community and by
the advances in hardware and software.

– Applications can be split into four major areas:

• Display of information

• Design

• Simulation

• User Interfaces

CS 480/680 Chapter 1 -- Graphics Systems and Models 3

• 1.1 Display of Information

– Classical graphics techniques
arose as a medium to convey
information among people:

• 4,000 years ago -- Babylonians:
floor plans of buildings on stones

• 2,000 years ago -- Greeks:
Architectural ideas

– Now we have Computer-based
drafting programs

CS 480/680 Chapter 1 -- Graphics Systems and Models 4

• For centuries -- Cartographers have
developed maps to display celestial
and geographical information.

– Now maps can be developed and
manipulated in real-time over the
internet.

CS 480/680 Chapter 1 -- Graphics Systems and Models 5

• Over the past 100 years -- workers in statistics have
explored techniques for generating plots to convey
information

– Now we have computer plotting packages

CS 480/680 Chapter 1 -- Graphics Systems and Models 6

• Medicine poses interesting and important data-
analysis problems

– CAT Scans, MRI’s ultrasound, and other 3D data producing
technologies

CS 480/680 Chapter 1 -- Graphics Systems and Models 7

• The field of Scientific Visualization provides
graphical tools that help these researchers and
others interpret the vast quantities of data
generated

CS 480/680 Chapter 1 -- Graphics Systems and Models 8

• 1.2 Design
– Engineering and Architecture are concerned

with design
• starting with a set of specification

• seek a cost-effective (and esthetic) solution

• This is an iterative process

– The power of interacting with images on the
screen

• has been known for at least 40 years.

• and today the use of interactive tools pervades the
CAD field in areas such as architecture and VLSI
design

CS 480/680 Chapter 1 -- Graphics Systems and Models 9

• 1.3 Simulation

– When did graphics begin to be used?

– Why?

– The field of VR has opened up many new
horizons.

• Same (or different) image in each eye

• position tracking

• interactive devices

• This has led to training capabilities
– NASA research grant

CS 480/680 Chapter 1 -- Graphics Systems and Models 10

• 1.4 User Interfaces

– Our interaction with computers has become
dominated by a visual paradigm that includes:

• windows,

• icons,

• menus, and

• a pointing device

• We have become so accustomed to this style of
interface that we often forget that what we are
doing is working with computer graphics.

CS 480/680 Chapter 1 -- Graphics Systems and Models 11

2. A Graphics System

– There are 5 major elements in our system

• Processor, Memory, Frame Buffer, Input Devices,
Output Devices

CS 480/680 Chapter 1 -- Graphics Systems and Models 12

• 2.1 Pixels and the Frame Buffer
– At present, almost all graphics systems are

raster-based
• A picture is produced from an array (the raster) of

picture elements (pixels)

• Def: depth of the frame buffer

CS 480/680 Chapter 1 -- Graphics Systems and Models 13

– Definitions:

• Depth of the frame buffer
– 1-bit

– 8-bit deep

– full-color is 24-bit or more

• Resolution
– the number of pixels in the frame buffer

• Rasterization or scan conversion
– The converting of geometric primitives into pixel

assignments in the frame buffer

CS 480/680 Chapter 1 -- Graphics Systems and Models 14

• 2.2 Output Devices

– The dominate type of display is the Cathode-
ray tube (CRT)

– Def: refresh rate

CS 480/680 Chapter 1 -- Graphics Systems and Models 15

CS 480/680 Chapter 1 -- Graphics Systems and Models 16

– Color CRT’s

• have three different colored phosphors arranged in
small groups (typically triads).

CS 480/680 Chapter 1 -- Graphics Systems and Models 17

• 2.3 Input Devices

– Most graphics systems provide a keyboard and
at least one other input device

• mouse

• joystick

• data tablet

– We will study these devices in Chapter 3

CS 480/680 Chapter 1 -- Graphics Systems and Models 18

3. Images:
Physical and Synthetic

• The Usual pedagogical approach:

– construct raster images

• simple 2D entities (points, lines, polygons)

– Define objects based upon 2D

– Because such functionality is supported by most
present computer graphics systems, we are going
to learn to create images here, rather than expand
a limited model.

CS 480/680 Chapter 1 -- Graphics Systems and Models 19

• 3.1 Objects and Viewers

– Two basic entities must be part of any image-
formation process:

• the object

• the viewer

• The object exists in space independent of any
image-formation process, and of any viewer.

CS 480/680 Chapter 1 -- Graphics Systems and Models 20

• What we will study Now
– Both the object and the viewer exist in a

3D world. However, the image they
define is 2D

– The process by which the specification of
the object is combined with the
specification of the viewer to produce an
image is the essence of image formation.

• Future:
– In Chapter 2, we show how OpenGL

allows us to build simple objects

– In Chapter 9 we learn how to define
objects in a manner that incorporates
relationships among objects.

CS 480/680 Chapter 1 -- Graphics Systems and Models 21

• 3.2 Light and Images

– Much information was missing from the
preceding picture:

• We have yet to mention light!
– If there were no light sources the objects would be dark,

and there would be nothing visible in our image.

• We have not mentioned how color enters the
picture

• Or, what are the effects of different kinds of
surfaces on the objects.

CS 480/680 Chapter 1 -- Graphics Systems and Models 22

– Taking a more physical approach, we can start
with the following arrangement:

• The details of the interaction between light and the
surfaces of the object determine how much light
enters the camera.

CS 480/680 Chapter 1 -- Graphics Systems and Models 23

– Light is a form of electromagnetic radiation:

CS 480/680 Chapter 1 -- Graphics Systems and Models 24

• 3.3 Ray Tracing

– We can start building an imaging model by
following light from a source.

CS 480/680 Chapter 1 -- Graphics Systems and Models 25

– Ray tracing is an image formation technique
that is based on these ideas and that can form
the basis for producing computer generated
images.

CS 480/680 Chapter 1 -- Graphics Systems and Models 26

4. The Human Visual System

• Our extremely complex visual system has all the
components of a physical imaging system, such as a
camera or a microscope.

CS 480/680 Chapter 1 -- Graphics Systems and Models 27

5. The Pinhole Camera

– What is one?

– A Pinhole camera is a box

• with a small hole in the center on one side,

• and the film on the opposite side

CS 480/680 Chapter 1 -- Graphics Systems and Models 28

– Pinhole camera near Cliff House in San Francisco

CS 480/680 Chapter 1 -- Graphics Systems and Models 29

6. The Synthetic Camera Model

– Consider the imaging system shown here:

CS 480/680 Chapter 1 -- Graphics Systems and Models 30

– A few Basic principles:

• First, the specification of the objects is independent
of the specification of the viewer.

– In a graphics library we would expect separate functions
for specifying objects and the viewer.

• Second, we can compute the image using simple
trigonometric calculations

CS 480/680 Chapter 1 -- Graphics Systems and Models 31

• Because of this, we can move the image plane in
front of the lens (call this the projection plane) and
end up with:

• In Chapter 5, we discuss this process in detail and
derive the relevant mathematical formulas

CS 480/680 Chapter 1 -- Graphics Systems and Models 32

• We must also consider the limited size of the image.

• Therefore, we must discuss clipping:

CS 480/680 Chapter 1 -- Graphics Systems and Models 33

7. The Programmer’s Interface

– There are numerous ways that a user can interact
with a graphics system.

• In a typical paint program it would look like:

CS 480/680 Chapter 1 -- Graphics Systems and Models 34

• 7.1 Application Programmer’s Interfaces

– What is an API?

– Why do you want one?

CS 480/680 Chapter 1 -- Graphics Systems and Models 35

– If we are to follow the synthetic camera model,
we need functions in the API to specify:

• Objects

• Viewer

• Light Sources

• Material Properties

CS 480/680 Chapter 1 -- Graphics Systems and Models 36

– Objects are usually defined by a set of vertices

• The following code fragment defines a triangular
polygon in OpenGL

– glBegin(GL_POLYGON);

– glVertex3f(0.0,0.0,0.0);

– glVertex3f(0.0,1.0,0.0);

– glVertex3f(0.0,0.0,1.0);

– glEND();

CS 480/680 Chapter 1 -- Graphics Systems and Models 37

– We can define a viewer or camera in a variety
of ways

• We can identify four types of necessary
specifications:

– Position

– Orientation

– Focal length

– Film plane

CS 480/680 Chapter 1 -- Graphics Systems and Models 38

– Light sources can be defined by their location,
strength, color, and directionality.

• API’s provide a set of functions to specify these
parameters for each source.

– Material properties are characteristics, or
attributes, of the objects

• such properties are usually defined through a series
of function calls at the time that each object is
defined.

CS 480/680 Chapter 1 -- Graphics Systems and Models 39

• 7.2 A Sequence of Images

– In Chapter 2 , we begin our detailed discussion
of the OpenGL API

– Color Plates 1 through 8 show what is possible
with available hardware and a good API, but
also they are not difficult to generate

CS 480/680 Chapter 1 -- Graphics Systems and Models 40

8. Graphics Architectures

– On one side of the API is the application program.
On the other is some combination of hardware
and software that implements the functionality of
the API

– Researchers have taken various approaches to
developing architectures to support graphics APIs

CS 480/680 Chapter 1 -- Graphics Systems and Models 41

– Early systems used general purpose computers

• single processing unit

• In the early days of computer graphics, computers
were so slow that refreshing even simple images,
containing a few hundred line segments, would
burden an expensive computer

CS 480/680 Chapter 1 -- Graphics Systems and Models 42

• 8.1 Display Processors

– The earliest attempts to build a special purpose
graphics system were concerned primarily with
relieving the task of refreshing the display

CS 480/680 Chapter 1 -- Graphics Systems and Models 43

• 8.2 Pipeline Architectures
• The major advances in graphics architectures

parallel closely the advances in workstations.

• For computer graphics applications, the most
important use of custom VLSI circuits has been in
creating pipeline architectures

• A simple arithmetic pipeline is shown here:

CS 480/680 Chapter 1 -- Graphics Systems and Models 44

• If we think in terms of processing the geometry of
our objects to obtain an image, we can use the
following block diagram:

• We will discuss the details of these steps in
subsequent chapters.

CS 480/680 Chapter 1 -- Graphics Systems and Models 45

• 8.3 Transformations

– Many of the steps in the imaging process can
be viewed as transformations between
representations of objects in different
coordinate systems

• for example: from the system in which the object
was defined to the system of the camera

– We can represent each change of coordinate
systems by a matrix

• We can represent successive changes by multiplying
(or concatenating) the individual matrices into a
single matrix.

CS 480/680 Chapter 1 -- Graphics Systems and Models 46

• 8.4 Clipping

– Why do we Clip?

– Efficient clipping algorithms are developed in
Chapter 7

CS 480/680 Chapter 1 -- Graphics Systems and Models 47

• 8.5. Projection

– In general three-dimensional objects are kept
in three dimensions as long as possible, as they
pass through the pipeline.

– Eventually though, they must be projected into
two-dimensional objects.

– There are various projections that we can
implement.

– We shall see in Chapter 5 that we can
implement this step using 4 x 4 matrices, and,
thus, also fit it into the pipeline.

CS 480/680 Chapter 1 -- Graphics Systems and Models 48

• 8.6 Rasterization

– Finally, our projected objects must be
represented as pixels in the frame buffer.

– We discuss this scan-conversion or
rasterization process in Chapter 7

CS 480/680 Chapter 1 -- Graphics Systems and Models 49

• 8.7 Performance Characteristics

– There are two fundamentally different types of
processing

• Front end -- geometric processing, based on the
processing of vertices

– ideally suited for pipelining, and usually involves floating-
point calculations.

– The geometry engine developed by SGI was a VLSI
implementation for many of these operations in a special
purpose chip. These became the basis for a series of
graphics workstations.

• Back end -- involves direct manipulation of bits in
the frame buffer.

– Ideally suited for parallel bit processors.

CS 480/680 Chapter 1 -- Graphics Systems and Models 50

9. Summary

– In this chapter we have set the stage for our top-
down development of computer graphics.

• Computer graphics is a method of image formation that
should be related to classical methods -- in particular to
cameras

• Our next step is to explore the application side of
Computer Graphics programming

– We will use the OpenGL API

CS 480/680 Chapter 1 -- Graphics Systems and Models 51

10. Suggested Readings

• Journals:

– Computer Graphics -- ACM

– IEEE Compute Graphics and Applications

• Textbooks:

– Foley et.al.

– Hearn and Baker

– Hill

CS 480/680 Chapter 1 -- Graphics Systems and Models 52

UNIT-2
Input and Interaction

53

Outlines

Interaction

Input Devices

Clients &servers

Display lists and modeling

Programming Event-Driven Input

• Menus, picking

Graphical User Interface

Animating Interactive Program

Logical Operation
54

Introduction

Basic Interactive Paradigm

 It is established by Ivan Sutherland (MIT 1963)

to characterize interactive computer graphics

• Step 1: User sees an object on the display

• Step 2: User points to (picks) the object with an

input device (light pen, mouse, trackball)

• Step 3: Object changes (moves, rotates, morphs)

• Step 4: Return to Step 1.

55

Interaction

 In the field of computer graphics, interaction refers to the manner
in which the application program communicates with input and
output devices of the system.

 For e.g. Image varying in response to the input from the user.

 OpenGL doesn‟t directly support interaction in order to maintain
portability. However, OpenGL provides the GLUT library. This
library supports interaction with the keyboard, mouse etc and
hence enables interaction. The GLUT library is compatible with
many operating systems such as X windows, Current Windows,
Mac OS etc and hence indirectly ensures the portability of
OpenGL.

56

Introduction

Input Devices

 The input devices can be considered in two

distinct ways.

• Physical Devices: is the way that we take to look

• Logical Devices: is to treat the devices in terms of

what they do from the perspective of the program.

57

Introduction

Physical Devices

mouse trackball
light pen

data tablet joy stick space ball

58

Introduction

Logical Device

 The behavior of the logical devices is

characterized by two factors.

• Measurement.

• Time to return the measurement.

 Six Types

• String: ASCII strings

• Locator: position

• Pick: identifier of an object

• Choice: one of the discrete items

• Valuator: return floating point number

• Stroke: return array of positions
59

Introduction

Input Modes

 It can be described in terms of two entities

• Measure Process: is what the device returns

• Trigger Process: is a physical input device that the

user can signal the computer.

 We can obtain the measure of a device in the

three Modes

• Request Mode

• Sample Mode

• Event Mode

60

Introduction

Input Modes

 Request Mode

• The measure of the device is not returned to the

program until the device is triggered.

• Example: The user can erase, edit, or correct until

enter (return) key (the trigger) is depressed

61

Introduction

Input Modes

 Sample Mode

• The measure is returned as soon as the function

call is encountered.

 Event Mode

• Each input device can be triggered at an arbitrary

time by a user.

• Each trigger generates an event whose measure is

put in an event queue.

62

Event-Driven Input Programming

Introduction

 The event-driven input is developed through

the callback mechanism

• Window: resize

• Mouse: click one or more buttons

• Motion: move mouse

• Keyboard: press or release a key

• Idle: nonevent

63

Event-Driven Input Programming

Pointing Device: Mouse Callback

 Setting: glutMouseFunc(mymouse)

 Prototype:

• button: GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON,

GLUT_RIGHT_BUTTON

• state: GLUT_UP, GLUT_DOWN

• x, y: position in window

void myMouse(GLint button, GLint state,

GLint x, GLint y)

64

Event-Driven Input Programming

Keyboard Events: glutKeyboardFunc()

 Trigger Situations

• The mouse is in the window

• One of the keys is pressed.

 Measurements

• ASCII Code of the Key

• Mouse Location

void mykeyboard(unsinged char key,

GLint x, GLint y)

65

Event-Driven Input Programming

Keyboard Events:

 A function glutGetModifiers() can be used to

get the meta keys, such as Control, Alt keys.

void myKeyboard(unsigned char key, int x, int y){

if(key == 'q' || key == 'Q') exit(0);

}/* End of myKeyboard */

glutKeyboardFunc(myKeyboard);

Example: Exit the Program

66

Event-Driven Input Programming

Window Resizing Event:glutReshapeFunc()

 It is triggered when the size of window is

changed.

 Issues

• Do we redraw all the objects?

• What do we do if the aspect ratio of the new

window is different from the old one?

• Do we change the sizes of attributes of new

primitives?

There is no single answer to any of these questions.

67

Event-Driven Input Programming

Window Resizing Event:glutReshapeFunc()

void myReshape(int width, int height){

/* set the sub menu */

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0, width, 0.0, height);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

/* set the main menu */

glViewPort(0, 0, width, height);

}/* End of myReshape */

68

Event-Driven Input Programming

Display & Idle Callback

 Display Callback: glutDisplayFunc()

• This callback can be invoked in different way to

avoid unnecessary drawings.

 Idle Callback

• It is invoked when there are no other events.

• The default of idle callback is NULL.

• glutidleFunc(myIdle)

glutPostRedisplay();

69

Event-Driven Input Programming

Callback Enable and Disable

 The callback function can be changed during

the program execution.

 We can disable a callback function by setting

its callback function to NULL

void myMouse(int button, int state, int x, int y){

if(button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)

glutIdleFunc(NULL);

}/* End of myKeyboard */

70

Event-Driven Input Programming

71

int main(int argc, char** argv){

/* initialize the interaction */

glutInit(&argc, argv);

/* specify the window properties and create window */

………

glutDisplayFunc(myDisplay);

glutIdleFunc(myIdle);

glutKeyboardFunc(myKeyboard);

glutMouseFunc(myMouse);

glutReshapeFunc(myReshape);

myInit();

/* start to run the program */

glutMainLoop();

}/* End of main */

Graphical User Interface: Menu

Menu Description

 GLUT provides pop-up menus for users to

create sophisticated interactive applications.

 The menus can be developed in a hierarchical

manner.

Development Steps

 Register a callback function to each menu

 Add the items to the menu

 Link the menu to a particular mouse button.

72

Graphical User Interface: Menu

Example:

void myInit(){

/* set the sub menu */

int sub_menu = glutCreateMenu(mySubMenu);

glutAddMenuEntry("Increase Square Size", 2);

glutAddMenuEntry("Decrease Square Size", 3);

/* set the main menu */

glutCreateMenu(myMenu);

glutAddMenuEntry("Quit", 1);

glutAddSubMenu("Resize", sub_menu);

glutAttachMenu(GLUT_RIGHT_BUTTON);

}/* End of myInit */

73

Callback Function

Callback Function

Graphical User Interface: Menu

Example:

void myMenu(int id){

switch(id){

case 1: exit(0);

}/* End of switch */

}/* End of myMenu */

void mySubMenu(int id){

}/* End of myMenu */

74

Animating Interactive Program

Description

 The function of animation is to create a

picture where one or more objects are moving.

 It is an important part of computer graphics.

 Examples

• An animated character walks across the display

• We may move the view over time.

75

Animating Interactive Program

Animation in Movie

 Motion is achieved by taking a sequence of

pictures and projecting them at 24 frames/sec.

• Step1: Each frame is moved to into position behind

the lens.

• Step2: The shutter is opened and frame is

displayed.

• Step3: The shutter is momentarily closed.

• Step4: Go to Step 1.

76

The key reason that motion picture projection works is
that each frame is complete when it is displayed.

Animating Interactive Program

Animation Problem

77

Open_Window();

for(int i=0; i < 1000000; i++){

Clear_Window();

Draw_Frame(i);

Wait();

}/* End of for-loop */

Problem: it doesn’t display completely drawn frames;
instead, you watch the drawing as it happens

Animating Interactive Program

Double Buffering

 Hardware/Software supplies two complete

color buffers.

• Front Buffer: the one for displaying

• Back Buffer: the one for drawing.

 The objective is to redisplay efficiently so that

we can’t notice the clearing and redrawing.

• One manifestation occurs if the display cannot be

drawn in a single refresh cycle.

78

Animating Interactive Program

Double Buffering

 Remark: It does not speed up the drawing

process, it only ensures that we never see a

partial display.

79

Motion = Redraw + Swap

Animating Interactive Program

Double Buffering

80

OpenGL:

glutInitDisplayMode (GLUT_RGB | GLUT_DOUBLE)

glutSwapBuffers(): swap these two buffers.

Open_Window(Double_Buffer);

for(int i=0; i < 1000000; i++){

Clear_Window();

Draw_Frame(i);

Swap_Buffer();

}/* End of for-loop */

Animating Interactive Program

Example: Rotating Square

 Draw a square rotating on the screen

 Rotation Start: press the left button of mouse.

 Rotation Stop: press the right button of mouse.

81

Animating Interactive Program

Example: Rotating Square

82

/* callback functions */

void myDisplay(); /* display callback */

void myIdle(); /* idle callback */

void myKeyboard(unsigned char, int, int);/* keyboard callback */

void myMouse(int, int, int, int); /* mouse callback */

void myTimer(int); /* timer callback */

/* member function */

void myInit();

void mySpin();

/* attribute */

float theta = 0.0;

Animating Interactive Program

83

int _tmain(int argc, char** argv){

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

glutInitWindowSize(500, 500);

glutInitWindowPosition(0, 0);

glutCreateWindow("Double Buffer");

glutDisplayFunc(myDisplay);

glutMouseFunc(myMouse);

myInit();

glutMainLoop();

return 0;

}/* End of main */

Animating Interactive Program

84

void myMouse(int button, int state, int x, int y){

switch (button) {

case GLUT_LEFT_BUTTON:

if (state == GLUT_DOWN)

glutIdleFunc(mySpin);

break;

case GLUT_MIDDLE_BUTTON:

case GLUT_RIGHT_BUTTON:

if (state == GLUT_DOWN)

glutIdleFunc(NULL);

break;

default:

break;

}/* End of switch */

}/* End of GasketDisplay */

Animating Interactive Program

85

void mySpin(void){

/* increase the theta */

theta += 2; /* increase 2 degree */

if(theta >= 360.0) theta = 0.0;

glutPostRedisplay();

}/* End of mySpin */

Animating Interactive Program

Example: Rotating Square
void myDisplay(){

glClear(GL_COLOR_BUFFER_BIT);

float thetar = theta * 3.14159 / (180);

glBegin(GL_POLYGON);

glVertex2f(cos(thetar), sin(thetar));

glVertex2f(sin(thetar), -cos(thetar));

glVertex2f(-cos(thetar), -sin(thetar));

glVertex2f(-sin(thetar), cos(thetar));

glVertex2f(cos(thetar), sin(thetar));

glEnd();

glFlush();

glutSwapBuffers();

}/* End of GasketDisplay */

86

Animating Interactive Program

Timer

 The objective is to avoid the blur effect of the

display due to many redrawing.

 The timer is used to control the redrawing

times per second.

 Timer Callback

• Execution of this function starts a timer to delay the

event loop for “delay” milliseconds.

• When timer has counted down, callback is invoked.

glutTimerFunc(int delay,
void(*timer_func)(int), int value);

87

Animating Interactive Program

Timer

 Because GLUT allows only a single timer, the

recursive mechanism should be used to

execute the callback.

void myTimer(int value){

glutTimerFunc(1000/value, myTimer, value);

}/* End of myTimer */

88

Logical Operation

Description

 The logical operations are the ways to

combine the source and destination pixels.

• Source Pixel: the pixel that we want to write

• Destination Pixel: the pixel in the drawing buffer

that the source pixel will affect.

89

Logical Operation

Description

 There are 16 possible functions between two

bits.

 Each function defines a writing mode.

Writing Mode

 Replacement/Copy Mode

• It is the default mode of OpenGL

• It replaces the destination pixel with source one.

 XOR Mode

• It combines two bits through exclusive operation

90

Logical Operation

Mode Change Operators

glEnable(GL_COLOR_LOGIC_OP);

glLogicOp(GL_XOR);

91

glEnable(GL_COLOR_LOGIC_OP);

glLogicOp(GL_COPY)

glBegin(GL_POLYGON);

glVertex2f(cos(thetar), sin(thetar));

glVertex2f(sin(thetar), -cos(thetar));

glVertex2f(-cos(thetar), -sin(thetar));

glEnd();

glLogicOp(GL_XOR);

Logical Operation

XOR Mode

 We return to the original state, if we apply xor

operation twice.

 It is generally used for erasing objects by

simply drawing it a second time.

92

sdd ssdd)(

93

Chapter 4

Geometric Objects and

Transformations

CS 480/680 Chapter 4 -- Geometric Objects and Transformations95

 Introduction:

 We are now ready to concentrate on three-dimensional graphics

 Much of this chapter is concerned with matters such as

 how to represent basic geometric types

 how to convert between various representations

 and what statements we can make about geometric objects, independent

of a particular representation.

1. Scalars, Points, and Vectors

CS 480/680 Chapter 4 -- Geometric Objects and Transformations96

 We need three basic types to define most geometric objects

 scalars

 points

 and vectors

 We can define each in many ways, so we will look at different

ways and compare and contrast them.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations97

 1.1 The Geometric View

 Our fundamental geometric object is a point.

 In a three-dimensional geometric system, a point is a location in space

 The only attribute a point possesses is its location in space.

 Our scalars are always real numbers.

 Scalars lack geometric properties,

 but we need scalars as units of measurement.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations98

 In computer graphics, we often connect points with directed

line segments

 These line segments are our vectors.

 A vector does not have a fixed position

 hence these segments are identical because their orientation and

magnitude are identical.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations99

 Directed line segments can have their lengths and directions changed by

real numbers or by combining vectors

CS 480/680 Chapter 4 -- Geometric Objects and Transformations100

 1.2 Coordinate-Free Geometry

 Points exist in space regardless of any reference

or coordinate system.

 Here we see a coordinate system defined by two axis

and a simple geometric primitive. We can refer to

points by their coordinates

 If we remove the axes, we can no longer specify

where the points are, except for in a relative term

CS 480/680 Chapter 4 -- Geometric Objects and Transformations101

 1.3 The Mathematical View: Vector and Affine Spaces
 We can regard scalars, points and vectors as members of mathematical

sets;

 Then look at a variety of abstract spaces for representing and

manipulating these sets of objets.

 The formal definitions of interest to us -- vector spaces, affine spaces, and

Euclidean spaces -- are given in Appendix B

CS 480/680 Chapter 4 -- Geometric Objects and Transformations102

 Perhaps the most important mathematical space is the vector

space

 A vector space contains two distinct entities: vectors and scalars.

 There are rules for combining scalars through two operations: addition

and multiplication, to form a scalar field

 Examples of scalar are:

 real numbers, complex numbers, and rational functions

 You can combine scalars and vectors to forma new vector through

 scalar-vector multiplication and vector-vector addition

CS 480/680 Chapter 4 -- Geometric Objects and Transformations103

 An affine space is an extension of the vector space that includes an

additional type of object:

 The point

 A Euclidean space is an extension that adds a measure of size or distance

 In these spaces, objects can be defined independently of any particular

representation

 But representation provides a tie between abstract objects and their

implementation

 And conversion between representations leads us to geometric

transformations

CS 480/680 Chapter 4 -- Geometric Objects and Transformations104

 1.4 The Computer Science View
 We prefer to see these objects as ADTs

 Def: ADT

 So, first we define our objects

 Then we look to certain abstract mathematical spaces to help us with the

operations among them

CS 480/680 Chapter 4 -- Geometric Objects and Transformations105

 1.5 Geometric ADTs
 Our next step is to show how we can use our types to perform

geometrical operations and to form new objects.

 Notation

 Scalars will be denoted a, b, g

 Points will be denoted P, Q, R, ...

 Vectors will be denoted u, v, w, ...

 The magnitude of a vector v is the real number that is denoted by |v|

 The operation of vector-scalar multiplication has the property that |av|

= |a||v|

CS 480/680 Chapter 4 -- Geometric Objects and Transformations106

 The direction of av is the same as the direction of v if a is positive.

 We have two equivalent operations that relate points and vectors:

 First there is the subtraction of two points P and Q. This is an

operation that yields a vector

o v = P - Q

o or P = v + Q

CS 480/680 Chapter 4 -- Geometric Objects and Transformations107

 Second there is the head-to-tail rule that gives us a convenient way of

visualizing vector-vector addition.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations108

 1.6 Lines

 The sum of a point and a vector leads to the notion of a line in

an affine space

 Consider all points of the form

 P(a) = P0+ad

o P0 is an arbitrary point

o d is an arbitrary vector

o a is a scalar

o This form is sometimes called the parametric form, because we

generate pints by varying the parameter a.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations109

 1.7 Affine Sums

 In an Affine Space

 the following are defined:

 the addition of two vectors,

 the multiplication of a vector by a scalar,

 and the addition of a vector and a point

 The following are not:

 the addition of two arbitrary points

 and the multiplication of a point by a scalar.

 There is an operation called Affine Addition that is.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations110

 Affine Addition:

 For any point Q, vector v, and positive scalar a

 P = Q + av describes all the points on the line Q in the direction of v

as shown

CS 480/680 Chapter 4 -- Geometric Objects and Transformations111

 1.8 Convexity

 Def: Convex object

 Def: Convex Hull

CS 480/680 Chapter 4 -- Geometric Objects and Transformations112

 1.9 Dot and Cross Products

 Dot product

 the dot product of u and v is written uv

 If uv=0, then u and v are orthogonal

 In euclidean space, |u|2 = uu

 The angle between two vectors is given by

 cos q = (uv)/(|u| |v|)

CS 480/680 Chapter 4 -- Geometric Objects and Transformations113

 Cross product

 We can use two non parallel vectors u and v to determine a third vector n

that is orthogonal to them n=u x v

CS 480/680 Chapter 4 -- Geometric Objects and Transformations114

 1.10 Planes

 Def: Plane

 Def: normal to the plane

2. Three-Dimensional Primitives

CS 480/680 Chapter 4 -- Geometric Objects and Transformations115

 In a three-dimensional world, we can have a far greater variety

of geometric objects than we could in two-dimensions.

 In 2D we had curves,

 Now we can have curves in space

CS 480/680 Chapter 4 -- Geometric Objects and Transformations116

 In 2D we had objects with interiors,

such as polygons,

 Now we have surfaces in space

 In addition, now we can have objects

that have volume

CS 480/680 Chapter 4 -- Geometric Objects and Transformations117

 We face two issues when moving from 2D to 3D.

 First, the mathematical definitions of these objects becomes complex

 Second, we are interested in only those objects that lead to efficient

implementations in graphic systems

 Three features characterize 3D objects that fit well with existing graphics

hardware and software:

 1. The objects are described by their surfaces and can be thought of as

hollow.

 2. The objects can be specified through a s set of vertices in 3D

 3. The objects either are composed of or can be approximated by flat

convex polygons.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations118

 We can understand why we set these conditions if we consider what most

modern graphics systems do best:

 They render triangles

 Def: tessellate

3. Coordinate Systems and Frames

CS 480/680 Chapter 4 -- Geometric Objects and Transformations119

 In a three-dimensional vector space, we can represent

any vector w uniquely in terms of any three linearly

independent vectors v1, v2, and v3, as

 w = a1v1+a2v2+a3v3

 The scalars a1, a2, and a3 are the components of w

with respect to the basis functions

CS 480/680 Chapter 4 -- Geometric Objects and Transformations120

 We can write the representation

of w with respect to this basis as

the column matrix

 We usually think of basis vectors

defining a coordinate system

1

2

3

a

a

a

a

CS 480/680 Chapter 4 -- Geometric Objects and Transformations121

 However, vectors have no position, so this

would also be appropriate

 But a little more confusing.

 Once we fix a reference point (the origin), we

will feel more comfortable,

 because the usual convention for drawing

the coordinate axes as emerging from the

origin

CS 480/680 Chapter 4 -- Geometric Objects and Transformations122

 This representation that requires both the reference point and the basis

vectors is called a frame.

 Loosely, this extension fixes the origin of the vector coordinate system

at some point P0.

 So, every vector is defined in terms of the basis vectors

 and every point is defined in terms of the origin and the basis vectors.

 Thus the representation of either just requires three scalars, so we can

use matrix representations

CS 480/680 Chapter 4 -- Geometric Objects and Transformations123

 3.1 Representations and N-tuples
 Suppose the vectors e1, e2, and e3 form a basis.

 The representation of any vector, v, is given by the components (a1, a2,

a3) where

 v = a1e1 + a2e3 + a3e3

CS 480/680 Chapter 4 -- Geometric Objects and Transformations124

 3.2 Changes in Coordinate Systems
 Frequently, we are required to find how the representation of a vector

changes when we change the basis vectors.

 Suppose {v1, v2, v3} and {u1, u2, u3} are two bases

 Each basis vector in the second can be represented in terms of the first

basis (and vice versa)

 Hence:

o u1 = g11v1+g12v2+g13v3

o u2 = g21v1+g22v2+g23v3

o u3 = g31v1+g32v2+g33v3

CS 480/680 Chapter 4 -- Geometric Objects and Transformations125

 The 3x3 matrix is

 is defined by the scalars and

 and M tells us how to go one way, and the inverse of M tells us how to

go the other way.

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

M

g g g

g g g

g g g

1 1

2 2

3 3

u v

u M v

u v

CS 480/680 Chapter 4 -- Geometric Objects and Transformations126

 This change in basis leave the origin unchanged

 However, a simple translation of the origin, or change of frame, cannot be

represented in this way

CS 480/680 Chapter 4 -- Geometric Objects and Transformations127

 3.3 Example of Change of Representation

 Suppose we have some vector w

 whose representation in some basis is a=[1,2,3]

 We can denote 3 basis vectors v1, v2, and v3.

 Hence w = v1 + 2v2 + 3v3

 Now suppose we make a new basis from the three vectors v1,

v2, and v3

 u1 = v1, u2 = v1+v2, u3 = v1+v2+v3

 Then the matrix M is

111

011

001

M

CS 480/680 Chapter 4 -- Geometric Objects and Transformations128

 The matrix which converts a representation in v1, v2, and v3 to

one wit u1, u2, and u3 is

 A=(MT)-1

 In the new system b = Aw

 That is w = -u1-u2+3u3

100

110

011

A

3

1

1

b

CS 480/680 Chapter 4 -- Geometric Objects and Transformations129

 3.4 Homogeneous Coordinates

 In order to distinguish between points and vectors…and

because matrix multiplication in 3D cannot represent a change

in frames, we introduce homogenous coordinates. (4D data)

 Homogenous coordinates allow us to tie a basis point (origin)

with the basis vectors.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations130

 If (v1,v2,v3,P0) and (u1,u2,u3,Q0) are two frames, then we

can represent the second in terms of the first as

 These equations can be written as:

 Where M is now:

03432421410

3332321313

3232221212

3132121111

PvvvQ

vvvu

vvvu

vvvu

ggg

ggg

ggg

ggg

0

3

2

1

0

3

2

1

P

v

v

v

M

Q

u

u

u

1

0

0

0

434241

333231

232221

131211

ggg

ggg

ggg

ggg

M

CS 480/680 Chapter 4 -- Geometric Objects and Transformations131

 We can also use M to compute the changes in the

representations directly.

 Suppose a and b are homogenous-coordinate representations of either two

points or two vectors in the two frames then

 a=MTb

 There are other advantages of using homogenous coordinate

systems. Perhaps the most important is the fact that all affine

transformations can be represented as matrix multiplications in

homogenous coordinates.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations132

 3.5 Example of Change in Frames

CS 480/680 Chapter 4 -- Geometric Objects and Transformations133

 3.6 Working with Representations

CS 480/680 Chapter 4 -- Geometric Objects and Transformations134

 3.7 Frames and ADTs
 Thus far, our discussion has been mathematical.

 Now we begin to address the question of what this has to do with

programming

CS 480/680 Chapter 4 -- Geometric Objects and Transformations135

 3.8 Frames in OpenGL
 In OpenGL we use two frames:

 The camera frame

 The world frame.

 We can regard the camera frame as fixed

 (or the world frame if we wish)

 The model-view matrix positions the world frame relative to the

camera frame.

 Thus, the model-view matrix converts the homogeneous-coordinate

representations of points and vectors to their representations in the

camera frame.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations136

 Because the model-view matrix is part of the state of the system there is

always a camera frame and a present-world frame.

 OpenGL provides matrix stacks, so we can store model-view matrices

 (or equivalently, frames)

CS 480/680 Chapter 4 -- Geometric Objects and Transformations137

 As we saw in Chapter 2, the camera is at the origin of its frame

 The three basis vectors correspond to:

o The up direction of the camera (y)

o The direction the camera is pointing (-z)

o and a third orthogonal direction

 We obtain the other frames (in which to place objects) by performing

homogeneous coordinate transformations

o We will learn how to do this in Section 4.5

o In Section 5.2 we use them to position the camera relative to our

objects.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations138

 Let’s look at a simple example:

 In the default settings, the camera and the world frame coincide with

the camera pointing in the negative z direction

 In many applications it is natural to define objects near the origin.

 If we regard the camera frame as fixed, then the model-view matrix:

 moves a point (x,y,z) in the world frame to the point (x,y,z-d) in the

camera frame.

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

A
d

CS 480/680 Chapter 4 -- Geometric Objects and Transformations139

 Thus by making d a suitably large positive number, we move the objets

in front of the camera

 Note that, as far as the user - who is working in world coordinates - is

concerned, they are positioning objects as before

 The model-view matrix takes care of the relative positioning of the

frames

4. Modeling a Colored Cube

CS 480/680 Chapter 4 -- Geometric Objects and Transformations140

 We now have the tools we need to build a 3D graphical

application.

 Consider the problem of drawing a rotating cube on the screen

CS 480/680 Chapter 4 -- Geometric Objects and Transformations141

 4.1 Modeling of a Cube

 typedef Glfloat point3[3];

 point3 vertices[8] = {{-1.0,-1.0,-1.0}, {1.0,-1.0,-1.0}, {1.0,1.0,-1.0},

{-1.0,1.0,-1.0}, {-1.0,-1.0,1.0}, {1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-

1.0,1.0,1.0}};

 glBegin(GL_POLYGON);

 glVertex3fv(vertices[0]);

 glVertex3fv(vertices[3]);

 glVertex3fv(vertices[2]);

 glVertex3fv(vertices[1]);

 glEnd();

CS 480/680 Chapter 4 -- Geometric Objects and Transformations142

 4.2 Inward- and Outward-Pointing Faces
 We have to be careful about the order in which we specify our vertices

when we are defining a three-dimensional polygon

 We call a face outward facing if the vertices are traversed in a

counterclockwise order when the face is viewed from the outside.

 This is also known as the right-hand rule

CS 480/680 Chapter 4 -- Geometric Objects and Transformations143

 4.3 Data Structures for Object Representation
 We could describe our cube

 glBegin(GL_POLYGON)

o six times, each followed by four vertices

 glBegin(GL_QUADS)

o followed by 24 vertices

 But these repeat data....

 Let’s separate the topology from the geometry.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations144

 4.4 The Color Cube
typedef Glfloat point3[3];

point3 vertices[8] = {{-1.0,-1.0,-1.0}, {1.0,-1.0,-1.0}, {1.0,1.0,-1.0}, {-

1.0,1.0,-1.0}, {-1.0,-1.0,1.0}, {1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

Glfloat colors[8][3]={0.0,0.0,0.0}, {1.0,0.0,0.0}, {1.0, 1.0, 0.0}, {0.0,1.0,0.0},

0.0,0.0,1.0}, {1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

void quad(int a, int b, int c, int d)

{

glBegin(GL_POLYGON);

glColor3fv(colors[a]); glVertex3fv(vertices[a]);

glColor3fv(colors[a]); glVertex3fv(vertices[b]);

glColor3fv(colors[a]); glVertex3fv(vertices[c]);

glColor3fv(colors[a]); glVertex3fv(vertices[d]);

glEnd();

}

CS 480/680 Chapter 4 -- Geometric Objects and Transformations145

 4.5 Bilinear Interpolation
 Although we have specified colors for the vertices of the cube, the

graphics system must decide how to use this information to assign colors

to points inside the polygon.

 Probably the most common method is bilinear interpolation.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations146

 Another method is Scan-line interpolation

 pushes the decision off until rasterization.

 OpenGL uses this method for this as well as other values.

 First you project the polygon

 Then convert the colors with each scan line

CS 480/680 Chapter 4 -- Geometric Objects and Transformations147

 4.6 Vertex Arrays
 Vertex arrays provide a method for encapsulating the information in our

data structure such that we could draw polyhedral objects with only a few

function calls.

 Rather than the 60 OpenGL calls:

o six faces, each of which needs a glBegin, a glEnd, four calls to

glColor, and four calls to glVertex.

 There are 3 steps in using vertex arrays

 First, enable the functionality of vertex arrays.

 Second, we tell OpenGL where and in what format the arrays are.

 Third, we render the object

CS 480/680 Chapter 4 -- Geometric Objects and Transformations148

glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer(3, GL_FLOAT, 0, colors);

Glubyte cubeIndices[24]={0,3,2,1,2,3,7,6,0,4,7,3,1,2,6,5,

4,5,6,7,0,1,5,4};

 We now have a few options regarding how to draw the arrays

for(i=0;i<6;i++)

glDrawElements(GL_POLYGON, 4, GL_UNSIGNED_BYTE,

&cubeIndeces[4*i]);

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE,

cubeIndeces);

5. Affine Transformations

CS 480/680 Chapter 4 -- Geometric Objects and Transformations149

 A transformation is a function that takes a point (or vector) and

maps it into another .

CS 480/680 Chapter 4 -- Geometric Objects and Transformations150

 We can represent this as:

 Q=T(P) and v=R(u)

 If we write both the points and vectors in homogeneous coordinates, then

we can represent both vectors and points in 4-D column matrices and

define a single function

 q=f(p) and v=f(u)

 This is too general, but if we restrict it to linear functions, then we can

always write it as

 v = Au

 where v and u are column vectors (or points) and A is a square matrix.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations151

 Therefore,

 we need only to transform the homogeneous coordinate

representation of the endpoints of a line segment to determine

completely a transformed line.

 Thus, we can implement our graphics systems as a pipeline that passes

endpoints through affine transformation units, and finally generate the

line at rasterization stage.

 Fortunately, most of the transformations that we need in computer

graphics are affine.

 These transformations include rotation, translation, and scaling.

 With slight modifications, we can also use these results to describe the

standard and parallel projections.

6. Translation, Rotation, and

Scaling

CS 480/680 Chapter 4 -- Geometric Objects and Transformations152

 In this section,

 First, we show how we can describe the most important affine

transformations independently of any representation.

 Then we find matrices that describe these transformations

 In section 4.8 we shall see how these transformations are

implemented in OpenGL

CS 480/680 Chapter 4 -- Geometric Objects and Transformations153

 6.1 Translation

 Translation is an operation that displaces points by a fixed

distance in a given direction

 To specify a translation, we need only to specify a displacement

vector d

CS 480/680 Chapter 4 -- Geometric Objects and Transformations154

 6.2 Rotation
 Rotation is more difficult to specify than translation, because more

parameters are involved

 Let’s start with 2D rotation about the origin

 These equations can be written in matrix form as:

c o s s in

s in c o s

x x

y y

q q

q q

CS 480/680 Chapter 4 -- Geometric Objects and Transformations155

 We expand this to 3D in Section 4.7

 Note that there are three features of this transformation that extend to

other rotations.

 1) There is one point - the origin - that is unchanged by the rotation.

This is called a fixed point.

 2) We can define positive rotations about other axes

 3) 2D rotation in the plane is equivalent to 3D rotation about the x

axis.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations156

 We can use these observations to define a general 3D rotation that is

independent of the frame.

 To do this we must specify:

o a fixed point: Pf

o a rotation angle: q

o a line or vector about which to rotate:

CS 480/680 Chapter 4 -- Geometric Objects and Transformations157

 Rotations and translation are known as rigid-body transformations.

 No combination can alter the shape of an object,

 They can alter only the object’s location and orientation

 The transformation given in this figure are affine, but they are not rigid-

body transformations

CS 480/680 Chapter 4 -- Geometric Objects and Transformations158

 6.3 Scaling
 Scaling is an affine non-rigid body transformation.

 Scaling transformations have a fixed point

CS 480/680 Chapter 4 -- Geometric Objects and Transformations159

 Hence, to specify a scaling,

 we can specify a fixed point,

 a direction in which we wish to scale,

 and a scale factor a.

o For a > 1, the object gets longer

o for 0 <= a < 1 the object get smaller

o Negative values of a give us reflection

7. Transformations in

Homogeneous Coordinates

CS 480/680 Chapter 4 -- Geometric Objects and Transformations160

 In most graphics APIs we work with a representation in

homogeneous coordinates.

 And each affine transformation is represented by a 4x4 matrix

of the form:

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

0 0 0 1

M

a a a a

a a a a

a a a a

CS 480/680 Chapter 4 -- Geometric Objects and Transformations161

 7.1 Translation
 Translation displaces points to a new position defined by a displacement

vector.

 If we move p to p’ by displacing by a distance d then

o p’ = p + d

o or p’ = Tp

o where

o T is called the translation matrix

1 0 0

0 1 0
1

0 0 1

0 0 0 1

x

y

z

T

a

a

a

CS 480/680 Chapter 4 -- Geometric Objects and Transformations162

 7.2 Scaling
 A scaling matrix with a fixed point at the origin allows for independent

scaling along the coordinate axes.

 x’=bxx

 y’=byy

 z’=bzz

 These three can be combined in homogeneous for as

 p’=Sp

, ,

0 0 0

0 0 0
() 1

0 0 0

0 0 0 1

x

y

x y z

z

S S

b

b
b b b

b

CS 480/680 Chapter 4 -- Geometric Objects and Transformations163

 7.3 Rotation
 We first look at rotation with a fixed point at the origin.

 We can find the matrices for rotation about the individual axes directly

from the results of the 2D rotation developed earlier.

 Thus,

o x’=x cos q - y sin q

o y’=x sin q + y cos q

o z’ = z

o of p’ = Rzp

c o s s in 0 0

s in c o s 0 0
()

0 0 1 0

0 0 0 1

z zR R

q q

q q
q

CS 480/680 Chapter 4 -- Geometric Objects and Transformations164

 We can derive the matrices for rotation about the x and y axes through an

identical argument.

 And we can come up with:

1 0 0 0

0 c o s s in 0
()

0 s in c o s 0

0 0 0 1

x xR R
q q

q
q q

c o s 0 s in 0

0 1 0 0
()

s in 0 c o s 0

0 0 0 1

y yR R

q q

q
q q

CS 480/680 Chapter 4 -- Geometric Objects and Transformations165

 7.4 Shear
 Although we can construct any affine transformation from a sequence of

rotations, translations, and scaling, there is one more affine

transformation that is of such importance that we regard it as a basic type,

rather than deriving it from others.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations166

 Using simple trigonometry, we can see that each shear is characterized by

a single q

 The equation for this shear is:

 x’= x + y cot q, y’= y, z’= z

 Leading to the shear matrix :

1 c o t 0 0

0 1 0 0
()

0 0 1 0

0 0 0 1

xH

q

q

8. Concatenation of

Transformations

CS 480/680 Chapter 4 -- Geometric Objects and Transformations167

 In this section, we create examples of affine transformations by

multiplying together, or concatenating, sequences of basic

transformations that we just introduced.

 This approach fits well with our pipeline architectures for implementing

graphics systems.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations168

 8.1 Rotation About a Fixed Point
 In order to do this:

 You do this:

CS 480/680 Chapter 4 -- Geometric Objects and Transformations169

 8.2 General Rotation
 An arbitrary rotation about the origin

can be composed of three successive

rotations about the tree axes.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations170

 8.3 The Instance Transformation
 Objects are usually defined in their own frames,

with the origin at the center of mass, and the sides

aligned with the axes.

 The instance transformation is applied as follows:

 First we scale

 Then we orient it with a rotation matrix

 Finally we translate it to the desired orientation.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations171

 8.4 Rotation About an Arbitrary Axis
 In order to do this:

 We move the fixed point to the origin

 Do the rotations

 Translate back

9. OpenGL Transformation

Matrices

CS 480/680 Chapter 4 -- Geometric Objects and Transformations172

 In OpenGL there are three matrices that are part of the state.

 We shall use only the model-view matrix in this chapter.

 All three can be manipulated by a common set of functions,

 And we use glMatrixMode to select the matrix to which the operations

apply.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations173

 9.1 The Current Transformation Matrix
 This is the matrix that is applied to any vertex that is defined subsequent

to its setting.

 If we change the CTM we change the state of the system.

 The CTM is part of the pipeline

 Thus, if p is a vertex, the pipeline produces Cp

 The functions that alter the CTM are:

 Initialization (C I)

 Post-Multiplication (C CT)

CS 480/680 Chapter 4 -- Geometric Objects and Transformations174

 9.2 Rotation, Translation, and Scaling
 In OpenGL,

 the matrix that is applied to all primitives is the product of the model-

view matrix (GL_MODELVIEW) and the projection matrix

(GL_PROJECTION)

 We can think of the CTM as the product of these two.

CS 480/680 Chapter 4 -- Geometric Objects and Transformations175

 We can load a matrix with

 glLoadMatrixf(pointer_to_matrix);

 or set it to the identity with

 glLoadIdentity();

 Rotation, translation, and scaling are provided through three functions:

 glRotate(angle, vx, vy, vz);

o angle is in degrees

o vx, vy, and vz are the components of a vector about which we wish

to rotate.

 glTranslate(dx, dy, dz);

 glScale(sx, sy, sz);

CS 480/680 Chapter 4 -- Geometric Objects and Transformations176

 9.3 Rotation About a Fixed Point in OpenGL
 In Section 4.8 we showed that we can perform a rotation about a fixed

point other than the origin.

 (translate, rotate, and translate back)

 Here is how you do it in OpenGL

o glMatrixMode(GL_MODELVIEW);

o glLoadIdentity();

o glTranslatef(4.0, 5.0, 6.0);

o glRotatef(45.0, 1.0, 2.0, 3.0);

o glTranslatef(-4.0, -5.0, -6.0);

CS 480/680 Chapter 4 -- Geometric Objects and Transformations177

 9.4 Order of Transformations
 You might be bothered by the apparent reversal of the function calls.

 The rule in OpenGL is this:

 The transformation specified most recently is the one applied first.

o C I

o C CT

o C CR

o C CT

 each vertex that is specified after the model-view matrix has been set

will be multiplied by C thus forming the new vertex

o q = Cp

CS 480/680 Chapter 4 -- Geometric Objects and Transformations178

 9.5 Spinning of the Cube

void display(void)

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

glRotatef(theta[0], 1.0, 0.0, 0.0);

glRotatef(theta[1], 0.0, 1.0, 0.0);

glRotatef(theta[2], 0.0, 0.0, 1.0);

colorcube();

glutSwapBuffers();

}

CS 480/680 Chapter 4 -- Geometric Objects and Transformations179

void mouse(int btn, int state, int x, int y)

{

if(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN)

axis = 0;

if(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)

axis = 1;

if(btn==GLUT_RIGHT_BUTTON && state == GLUT_DOWN)

axis = 2;

}

CS 480/680 Chapter 4 -- Geometric Objects and Transformations180

void spinCube()

{

theta[axis] += 2.0;

if (theta[axis] > 360.0) theta[axis] -= 360.0;

glutPostRedisplay();

}

void mkey(char key, int mousex, int mousey)

{

if(key==‘q’ || key==‘Q’)

exit();

}

CS 480/680 Chapter 4 -- Geometric Objects and Transformations181

 9.6 Loading, Pushing, and Popping Matrices
 For most purposes, we can use rotation, translation , and scaling to form a

desired transformation matrix.

 In some circumstances, however, such as forming a shear matrix, it is

easier to set up the matrix directly.

 glLoadMatrixf(myarray);

 Note: This is a column major array.

 We can also multiply on the right of the current matrix by using

 glMultMatrixf(myarray);

CS 480/680 Chapter 4 -- Geometric Objects and Transformations182

 Sometimes we want to perform a transformation and then return to the

same state as before its execution.

 We can push the current transformation matrix on a stack and recover it

later.

 Thus we often see the sequence

 glPushMatrix();

 glTransletef(. . .);

 glRotatef(. . .);

 glScalef(. . .);

 // draw object here

 glPopMatrix();

10 Interfaces to Three-Dimensional

Applications

CS 480/680 Chapter 4 -- Geometric Objects and Transformations183

 This section describes combination of

devices (keyboard and mouse) as well as

trackballs and virtual trackballs to achieve

better input.

11. Quaternions

CS 480/680 Chapter 4 -- Geometric Objects and Transformations184

 Quaternions are an extension of complex numbers that

provide an alternative method for describing and

manipulating rotations.

 Although less intuitive, they provide advantages for animation

and hardware implementations of rotation

12. Summary and Notes

CS 480/680 Chapter 4 -- Geometric Objects and Transformations185

 In this chapter, we have presented two different-but ultimately

complementary-points of view regarding the mathematics of Computer

Graphics.

 One is the mathematical abstraction of the objects with which we work in

computer graphics is necessary if we are to understand the operations that

we carry out in our programs

 The other is that transformations (and homogeneous coordinates) are the

basis for implementations of graphics systems

 Finally we provided the set of affine transformations supported by OpenGL,

and discussed ways that we could concatenate them to provide all affine

transformations.

13. Suggested Readings

CS 480/680 Chapter 4 -- Geometric Objects and Transformations186

 Homogeneous coordinates arose in Geometry(51) and were alter

discovered by the graphics community(81)

 Their use in hardware started with the SGI Geometry Engine (82)

 Modern hardware architectures use Application Specific Integrated Circuits

(ASIC’s) that include homogeneous coordinate transformations

 Quaternions were introduced to computer graphics by Shoemaker(85)

for use in animation

 Software tools such as Mathematica(91) and Matlab(95) are excellent aids

for learning to manipulate transformation matrices

Exercises -- Due next Monday

CS 480/680 Chapter 4 -- Geometric Objects and Transformations187

 4.5

 4.8

 4.13

 4.17

3D Graphics

Translation

Translation

Rotation

Rotation

Rotation

Scaling

• The matrix expression for the scaling

transformation of a position P = (xi, yi, zi) relative

to coordinate origin can be written as:

3D Viewing

• Viewing in 3D involves the following considerations: -

– We can view an object from any spatial position, eg.

In front of an object, Behind the object, In the middle

of a group of objects, Inside an object, etc.

• 3D descriptions of objects must be projected onto the flat

viewing surface of the output device.

Viewing Coordinates

• Generating a view of an object in 3D is similar to

photographing the object.

• Whatever appears in the viewfinder is projected onto the

flat film surface.

• Depending on the position, orientation and aperture size

of the camera corresponding views of the scene is

obtained.

Specifying The View Coordinates

• For a particular view of a scene

first we establish viewing-

coordinate system.

• A view-plane (or projection plane)

is set up perpendicular to the

viewing z-axis.

• World coordinates are

transformed to viewing

coordinates, then viewing

coordinates are projected onto the

view plane.

xw

zw

yw

xv

zv

yv

P0=(x0 , y0 , z0)

Specifying The View Coordinates

• To establish the viewing reference frame, we first pick a

world coordinate position called the view reference

point.

• This point is the origin of our viewing coordinate

system. If we choose a point on an object we can think

of this point as the position where we aim a camera to

take a picture of the object.

Projection

• General definition

– Transform points in n-space to m-space(m<n)

• In computer graphics

– Map viewing coordinates to 2D screen

coordinates

Taxonomy of Projections

Planar geometric projection

Parallel Perspective

Orthographic Oblique

Top

Front

Side

Axonometric Cabinet

Cavalier

Other

One-point

Two-point

Three-point

Parallel & Perspective

• Parallel Projection

• Perspective Projection

Parallel Projection

• Center of projection is at infinity

– Direction of projection (DOP) same for all

points

View Plane

DOP

Orthographic & Oblique
• Orthographic parallel projection

– the projection is perpendicular to the view
plane

• Oblique parallel projection
– The projectors are inclined with respect to the

view plane

Orthographic Projections

• DOP perpendicular to view plane

Front

Top Side

Oblique Projections

• DOP not perpendicular to view plane

Cavalier

(DOP at 45)

Cabinet

(DOP at 63.4)

Oblique Projections

• DOP not perpendicular to view plane

– Cavalier projection

– Cabinet projection
aa 4.63,2tan

aa 45,1tan

Perspective Projection

• Map points onto “view plane” along

“projectors” emanating from “center of

projection”(cop)

View Plane
Center of
Projection

Perspective Projection

• How many vanishing point?

Perspective Projection

• How many vanishing point?

Three-point
perspective

Perspective Projection

• How many vanishing point?

Three-point
perspective

Two-point
perspective

Perspective Projection

• How many vanishing point?

Three-point
perspective

Two-point
perspective

One-point
perspective

2D Clipping

2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

6. Curve Clipping

2D Clipping
1. Introduction:

A scene is made up of a collection of objects specified in world

coordinates

World Coordinates

* Computer Graphics 2
1
4

2D Clipping

wymin

wxmin wxmax

When we display a scene only those objects within a particular

window are displayed

Window

wymax

World Coordinates

* Computer Graphics 2
1
5

* 5

2D Clipping

wymin

wxmax
wxmin

CoWmpourteldr GCraopohricdsinates

Because drawing things to a display takes time we clip everything

outside the window

Window

wymax

* Computer Graphics 2
1
7

1.1 Definition:

– Clipping is the process of determining which elements of
the picture lie inside the window and are visible.

– By default, the “clip window” is the entire canvas
• not necessary to draw outside the canvas

• for some devices, it is damaging (plotters)

• \

– Sometimes it is convenient to restrict the “clip window” to
a smaller portion of the canvas

• partial canvas redraw for menus, dialog boxes, other obscuration

2D Clipping

* Computer Graphics 2
1
8

1.2 Shielding:

– Shielding or exterior clipping is the reverse operation of

clipping where window act as the block used to abstract the

view.

– Examples

• A multi view window system

• The design of page layouts in advertising or publishing

applications or for adding labels or design patterns to

picture.

• Combining graphs, maps o schematics

2D Clipping

2D Clipping

wymax

wymin

wxmin wxmax

Window

World Coordinates

* Computer Graphics 2
1
9

* 9

2D Clipping

1.3 Example:

For the image below consider which lines and points should be kept

and which ones should be clipped against the clipping window

wymax

wymin

wx
min

Computer Graphicswxmax

Window

P
1

P
6

P
5

P
3

P
7

P10

P
9

P
4

P
2

P
8

* Computer Graphics 22
1

4. Applications:

– Extract part of a defined scene for viewing.

– Drawing operations such as erase, copy, move etc.

– Displaying multi view windows.

– Creating objects using solid modeling techniques.

– Anti-aliasing line segments or object boundaries.

– Identify visible surfaces in 3D views.

2D Clipping

* Computer Graphics 22
2

2D Clipping

1.5 Types of clipping:

– Three types of clipping techniques are used depending

upon when the clipping operation is performed

a. Analytical clipping

– Clip it before you scan convert it

– used mostly for lines, rectangles, and polygons, where

clipping algorithms are simple and efficient

* Computer Graphics 22
3

2D Clipping

b. Scissoring

– Clip it during scan conversion

– a brute force technique

• scan convert the primitive, only write pixels if inside the clipping

region

• easy for thick and filled primitives as part of scan line fill

• if primitive is not much larger than clip region, most pixels will fall

inside

• can be more efficient than analytical clipping.

* Computer Graphics 22
4

2D Clipping

c. Raster Clipping

– Clip it after scan conversion

– render everything onto a temporary canvas and copy the

clipping region

• wasteful, but simple and easy,

• often used for text

* Computer Graphics 22
5

6. Levels of clipping:

– Point Clipping

– Line Clipping

– Polygon Clipping

– Area Clipping

– Text Clipping

– Curve Clipping

2D Clipping

2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

6. Curve Clipping

* Computer Graphics 16

Point Clipping

wx ≤ x ≤ wx
min max

&

min
wy ≤ y ≤ wy

max

– otherwise it is clipped

– Simple and Easy

– a point (x,y) is not clipped if:
wymax

wy
min

wxmin wxmax

Window

P
1

P
2

P
5

P
7

P10

P
4

P
8

Clipped

Points Within the Window
are Not Clipped

P
9

Clipped

Clipped

Clipped

2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

6. Curve Clipping

Line Clipping

– It is Harder than point
clipping

– We first examine the

end-points of each line to
see if they are in the
window or not

• Both endpoints inside, line
trivially accepted

• One in and one out, line is
partially inside

• Both outside, might be
partially inside

• What about trivial cases?

ymin

* Computer Graphics 22
9

ymax

xmin xmax

Line Clipping

Situation Solution Example

Both end-points inside

the window
Don’t clip

One end-point inside the

window, one outside
Must clip

Both end-points outside

the window
Don’t know!

* Computer Graphics 23
0

2D Line Clipping Algorithms

1. Analytical Line Clipping

2. Cohen Sutherland Line Clipping

3. Liang Barsky Line Clipping

* Computer Graphics 21

Cohen-Sutherland Line Clipping

– An efficient line clipping

algorithm

– The key advantage of the

algorithm is that it vastly

reduces the number of line

intersections that must be

calculated. co-developed

Dr. Ivan E. Sutherland

the

Cohen-Sutherland clipping

algorithm. Sutherland is a

graphics giant and includes

amongst his achievements

the invention of the head

mounted display.
Cohen is something of a mystery – can

anybody find out who he was?

* Computer Graphics 23
3

Cohen-Sutherland Line Clipping

– Two phases Algorithm

Phase I: Identification Phase

All line segments fall into one of the following categories

1. Visible: Both endpoints lies inside

2. Invisible: Line completely lies outside

3. Clipping Candidate: A line neither in category 1 or 2

Phase II: Perform Clipping

Compute intersection for all lines that are candidate for
clipping.

* Computer Graphics 23
4

Cohen-Sutherland Line Clipping

Phase I: Identification Phase: World space is divided into regions

based on the window boundaries

– Each region has a unique four bit region code

– Region codes indicate the position of the regions with respect to the

window

1001 1000 1010

0001
0000

Window
0010

0101 0100 0110

Top
belo

w
right left

4 3 2 1

Region Code Legend

Cohen-Sutherland Line Clipping

Every end-point is labelled with the appropriate region code

wymax

wy
min

wxmin wxmax

3
P [0001]

P
6
[0000]

P
5

[0000]

P
7

[0001]

P
10

[0100]

P
9

[0000]

P
4
[1000]

Window

8
P [0010]

P
12

[0010]

P
11

[1010]

P
13

[0101]

* Computer Graphics 23
5

P
14

[0110]

* 25

Cohen-Sutherland Line Clipping

Visible Lines: Lines completely contained within the window

boundaries have region code [0000] for both end-points so are not

clipped

wymax

wy
min

wxmin
Computer Graphicswx

max

3
P [0001]

P
6
[0000]

P
5

[0000]

P
7

[0001]

P
10

[0100]

P
9

[0000]

P
4
[1000]

Window

8
P [0010]

P
12

[0010]

P
11

[1010]

P
13

[0101] P
14

[0110]

* 26

Cohen-Sutherland Line Clipping

Invisible Lines: Any line with a common set bit in the region

codes of both end-points can be clipped completely

– The AND operation can efficiently check this

– Non Zero means Invisible

wymax

wy
min

wxmin
Computer Graphicswx

max

3
P [0001]

P
6
[0000]

P
5

[0000]

P
7

[0001]

P
10

[0100]

P
9

[0000]

P
4
[1000]

Window

8
P [0010]

P
12

[0010]

P
11

[1010]

P
13

[0101] P
14

[0110]

* 27

Cohen-Sutherland Line Clipping

Clipping Candidates: Lines that cannot be identified as

completely inside or outside the window may or may not cross

the window interior. These lines are processed in Phase II.

– If AND operation result in 0 the line is candidate for clipping

wymax

wy
min

wxmin
Computer Graphicswx

max

3
P [0001]

P
6
[0000]

P
5

[0000]

P
7

[0001]

P
10

[0100]

P
9

[0000]

P
4
[1000]

Window

8
P [0010]

P
12

[0010]

P
11

[1010]

P
13

[0101] P
14

[0110]

Cohen-Sutherland Line Clipping

Assigning Codes

– Let point (x,y) is be given

code b
3
b

2
b

1
b

0
:

bit 3 = 1 if wy
max

- y ≤0

bit 2 = 1 if y - wy
min

≤ 0

max
bit 1 = 1 if wx - x ≤0

bit 0 = 1 if x - wx
min

≤ 0

wy
max

wy
min

wx
min wxmax

P
6
[0000]

P
3
[0001]

P
7
[0001

P
10

[0100]

P
5

[0000]

]

P
9

[0000]

4

Window

P [1000]

8
P [0010]

P
12

[0010]

P
11

[1010]

13

* Computer Graphics 23
9

P [0101]
14

P [0110]

* Computer Graphics 24
0

Cohen-Sutherland Clipping Algorithm

Phase II: Clipping Phase: Lines that are in category 3 are now
processed as follows:

– Compare an end-point outside the window to a boundary
(choose any order in which to consider boundaries e.g. left,
right, bottom, top) and determine how much can be
discarded

– If the remainder of the line is entirely inside or outside the
window, retain it or clip it respectively

– Otherwise, compare the remainder of the line against the
other window boundaries

– Continue until the line is either discarded or a segment
inside the window is found

* Computer Graphics 24
1

Cohen-Sutherland Line Clipping

• Intersection points with the window boundaries are calculated

using the line-equation parameters

– Consider a line with the end-points (x
1
, y

1
) and (x

2
, y

2
)

– The y-coordinate of an intersection with a vertical window

boundary can be calculated using:

y = y
1

+ m (x
boundary

- x
1
)

where x
boundary

can be set to either wx
min

or wx
max

– The x-coordinate of an intersection with a horizontal

window boundary can be calculated using:

x = x
1

+ (y
boundary

- y
1
) / m

where y
boundary

can be set to either wy
min

or wy
max

* Computer Graphics 24
2

Cohen-Sutherland Line Clipping

• We can use the region codes to determine which window
boundaries should be considered for intersection

– To check if a line crosses a particular boundary we
compare the appropriate bits in the region codes of its
end-points

– If one of these is a 1 and the other is a 0 then the line
crosses the boundary.

Cohen-Sutherland Line Clipping
Example1: Consider the line P

9
to P

10
below

– Start at P
10

– From the region codes

of the two end-points we

know the line doesn’t

cross the left or right

boundary

– Calculate the intersection

of the line with the bottom boundary

to generate point P
10

’

– The line P
9

to P
10

’ is completely inside the window so is

retained

x
wy

ma

wy
min

wx
min wxmax

Window

P
10

’ [0000]

P
10

[0100]

P
9

[0000]

* Computer Graphics 24
3

Cohen-Sutherland Line Clipping

Example 2: Consider the line P
3

to P
4

below

– Start at P
4

– From the region codes

of the two end-points

we know the line

crosses the left

boundary so calculate

the intersection point to

generate P
4
’

– The line P
3

to P
4
’ is completely outside the window so is

clipped

wymax

wymin

wxmin wxmax

4
P ’ [1001]

P
4
[1000]

Window

* Computer Graphics 24
4

3
P [0001]

Cohen-Sutherland Line Clipping

Example 3: Consider the line P
7

to P
8

below

– Start at P
7

– From the two region

codes of the two

end-points we know

the line crosses the

left boundary so

calculate the

intersection point to

generate P
7
’

wy
max

wy
min

wxmin wxmax

Window

P7’ [0000]

P
7

[0001] P
8

[0010]

P
8
’ [0000]

* Computer Graphics 24
5

Cohen-Sutherland Line Clipping

Example 4: Consider the line P
7
’ to P

8

– Start at P
8

– Calculate the

intersection with the

right boundary to

generate P
8
’

– P
7
’ to P

8
’ is inside

the window so is

retained

wy
max

wymin

wxmin wxmax

Window

P
7
’ [0000]

P
7

[0001] P
8

[0010]

P
8
’ [0000]

* Computer Graphics 24
6

* Computer Graphics 24
7

Cohen-Sutherland Line Clipping

Mid-Point Subdivision Method
– Algorithm

1. Initialise the list of lines to all lines

2. Classify lines as in Phase I

i. Assign 4 point bit codes to both end points a
3
a

2
a

1
a

0
and b

3
b

2
b

1
b

0

ii. If (a
3
a

2
a

1
a

0
= b

3
b

2
b

1
b

0
= 0)Line in category 1

iii.If (a
3
a

2
a

1
a

0
)AND (b

3
b

2
b

1
b

0
) # 0) Line in category 2 iv.

If (a
3
a

2
a

1
a

0
)AND (b

3
b

2
b

1
b

0
) = 0) Line in category 3

3. Display all lines from the list in category 1 and remove;

4. Delete all lines from the list in category 2 as they are invisible;

5. Divide all lines of category 3 are into two smaller segments at mid-point

(x
m
,y

m
) where x

m
= (x

1
+x

2
)/2 and y

m
= (y

1
+y

2
)/2

6. Remove the original line from list and enter its two newly created
segments.

7. Repeat step 2-5 until list is null.

Cohen-Sutherland Line Clipping

wymax

wymin

Window

wx
min

Computer Graphics wx
max

* 24
8

Cohen-Sutherland Line Clipping

wymax

wx
min

Computer Graphics wx
max

* 24
9

wymin

Window

* Computer Graphics 25
0

Cohen-Sutherland Line Clipping

Mid-Point Subdivision Method

– Integer Version

– Fast as Division by 2 can be performed by simple shift

right operation

– For NxN max dimension of line number of subdivisions

required log
2

N.

– Thus a 1024x1024 raster display require just 10

subdivisions………

2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon / Area Clipping

5. Text Clipping

6. Curve Clipping

Polygon Clipping

• Polygons have a distinct inside and outside…

• Decided by

– Even/Odd

– Winding Number

* Computer Graphics 25
2

Polygon Clipping

• Note the difference between clipping lines and

polygons:

NOTE!

* Computer Graphics 25
3

Polygon Clipping

• Some difficulties:

– Maintaining correct inside/outside

– Variable number of vertices

– Handle screen

corners correctly

* Computer Graphics 25
4

Sutherland-Hodgman Area Clipping

• A technique for clipping areas

developed by Sutherland &

Hodgman

• Put simply the polygon is clipped

by comparing it against each

boundary in turn

Original Area Clip Left Clip Right Clip Top Clip Bottom

Sutherland

turns up

again. This

time with

Gary Hodgman with

whom he worked at

the first ever graphics

company Evans &

Sutherland

* Computer Graphics 25
5

* Computer Graphics 25
6

1. Basic Concept:

• Simplify via separation

• Clip whole polygon against one edge

– Repeat with output for other 3 edges

– Similar for 3D

• You can create intermediate vertices that get thrown

out

Sutherland-Hodgeman Polygon Clipping

Sutherland-Hodgeman Polygon Clipping

• Example

Start Left Right Bottom

Note that the point one of the points added when clipping

on the right gets removed when we clip with bottom

Top

* Computer Graphics 25
7

2. Algorithm:

Let (P
1
, P

2
,…. P

N
) be the vertex list of the Polygon to be

clipped and E be the edge of +vely oriented, convex clipping

window.

We clip each edge of the polygon in turn against each

window edge E, forming a new polygon whose vertices are

determined as follows:

Sutherland-Hodgeman Polygon Clipping

* Computer Graphics 25
8

* Computer Graphics 25
9

Four cases

1. Inside: If both P
i-1

and P
i
are to the left of window edge

vertex then P
i
is placed on the output vertex list.

2. Entering: If P
i-1

is to the right of window edge and P
i
is to

the left of window edge vertex then intersection (I) of P
i-1

P
i

with edge E and P
i
are placed on the output vertex list.

3. Leaving: If P
i-1

is to the left of window edge and P
i
is to the

right of window edge vertex then only intersection (I) of P
i-1

P
i
with edge E is placed on the output vertex list.

4. Outside: If both P
i-1

and P
i
are to the right of window edge

nothing is placed on the output vertex list.

Sutherland-Hodgeman Polygon Clipping

Sutherland-Hodgeman Polygon Clipping

Creating New Vertex List

out □ out

save nothing

Outside

(0 output)

P
i-1

P
i

in □ in

save ending vert

Inside

(1 output)

Pi-1

P
i

out □ in

save new clip vert

and ending vert

Entering

(2 outputs)

P
i

P
i-1

P
i

in □ out

save new clip vert

Leaving

(1 output)

Pi-1

* Computer Graphics 26
0

Sutherland-Hodgman Polygon Clipping

• Each example shows the

point being processed (P)

and the previous point (S)

• Saved points define area

clipped to the boundary in

question

S

Save P

S

Point I

P

S

No Points Saved

P

P I

P

oint P Save

S

I

Save Points I & P
* Computer Graphics 26

1

START

INPUT VERTEX LIST

(P
1
, P

2
........, P

N
)

IF P
i
P

i+1

INTERSECT E

?

FOR i =1 TO (N-1) DO

COMPUTE I

OUTPUT I IN VERTEX LIST

i
IF P TO LEFT

OF E ?

YES NO

YES

OUTPUT P
i
IN VERTEX LIST

NO

i = i+1

Flow Chart

* Computer Graphics 26
2

Special case for

first Vertex

Flow Chart
Special case for

first Vertex
IF P

N
P

0

INTERSECT

E ?

COMPUTE I

YES

* Computer Graphics 26
3

NO

OUTPUT I IN VERTEX

LIST

END

YOU CAN ALSO APPEND AN ADDITIONAL VERTEX

P
N+1

= P
1
AND AVOID SPECIAL CASE FOR FIRST

VERTEX

Sutherland-Hodgeman Polygon Clipping

Inside/Outside Test:

Let P(x,y) be the polygon vertex which is to be tested against

edge E defined form A(x
1
, y

1
) to B(x

2
, y

2
). Point P is to be said

to the left (inside) of E or AB iff

or C = (x
2
– x

1
) (y – y

1
) – (y

2
– y

1
)(x – x

1
) > 0

otherwise it is said to be the right/Outside of edge E

* Computer Graphics 26
4

Weiler-Atherton Polygon Clipping

• Problem with Sutherland-Hodgeman:

– Concavities can end up linked

• Weiler-Atherton creates separate polygons in such

cases

Remember

me?

* Computer Graphics 26
5

Weiler-Atherton Polygon Clipping

• Example

add clip pt.

and end pt.

add end pt. add clip pt.

cache old dir.

follow clip edge until

* Computer Graphics 26
6

a) new crossing

found

b) reach pt. already

added

Weiler-Atherton Polygon Clipping

• Example (cont)

continue from

cached location

add clip pt.

and end pt.

add clip pt.

cache dir.

follow clip edge until

a)new crossing

found

b)reach pt. already

added

* Computer Graphics 26
7

Weiler-Atherton Polygon Clipping

• Example (concluded)

continue from

cached location

nothing added

finished

* Computer Graphics 26
8

Final result:

Two unconnected

polygons

Weiler-Atherton Polygon Clipping

• Difficulties:

– What if the polygon re-crosses edge?

– How many “cached” crosses?

– Your geometry step must be able to create new polygons
• Instead of 1-in-1-out

* Computer Graphics 26
9

Other Area Clipping Concerns

• Clipping concave areas can be a little more tricky as often
superfluous lines must be removed

• Clipping curves requires more work

– For circles we must find the two intersection points on the window
boundary

Window WindowWindow Window

* Computer Graphics 27
0

2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

6. Curve Clipping

* Computer Graphics 61

Text Clipping

Text clipping relies on the concept of bounding

rectangle

TYPES

1. All or None String Clipping

2. All or None Character Clipping

3. Component Character Clipping

Text Clipping

1. All or None String Clipping

• In this scheme, if all of the string is inside window, we clip it,

otherwise the string is discarded. This is the fastest method.

• The procedure is implemented by consider a bounding rectangle

around the text pattern. The boundary positions are compared to

the window boundaries. In case of overlapping the string is

rejected.

STRI NG

1

STRING

3 STRING

STRING

5

STRING
* Computer Graphics 624 4

Text Clipping

2. All or None Character Clipping

• In this scheme, we discard only those characters that are not

completely inside window.

• Boundary limits of individual characters are compared against

window. In case of overlapping the character is rejected.

5

STRI NG

1

STRING

STRING

NG

1

TRING

3 STRING3 STRING

4* Computer Graphics 634

Text Clipping

3. Component Character Clipping

• Characters are treated like graphic objects.

– Bit Mapped Fonts : Point Clipping

– Outlined Fonts : Line/Curve Clipping

• In case of overlapping the part of the character inside is displayed

and the outside portion of the character is rejected.

STRI NG

1

STRING

STRING

5

NG

1

TRINGS

3 3STRING

4

STRING

4* Computer Graphics 64

2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

6. Curve Clipping

Curve Clipping

– Areas with curved boundaries can be clipped with

methods similar to line and polygon clipping.

– Curve clipping requires more processing as it

involve non linear equations.

– Bounding Rectangles are used to test for overlap

with rectangular clip window.

* Computer Graphics 27
7

– If bounding rectangle is completely inside the

object/curve is saved.

– If bounding rectangle is completely outside the

object/curve is discarded.

Curve Clipping

* Computer Graphics 27
8

– If both the above tests fails we use other

computation saving approaches depending upon

type of object

• Circle: Use coordinate extent of individual quadrant,

then octant if required.

• Ellipse: Use coordinate extent of individual quadrant.

• Point: Use point clipping

Curve Clipping

* Computer Graphics 27
9

Any Question !

