
Graphics Systems and Models

Chapter 1



• Introduction:
– Computer Graphics

• What is it?

– Overview of what we will cover:
• A graphics overview

• Graphics Theory

• A graphics Software System: OpenGL

– Our approach will be top-down.
• We want you to start writing application programs 

that generate graphical output as quickly as 
possible
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1. Applications of Computer Graphics

– The development of Computer Graphics has been 
driven by the needs of the user community and by 
the advances in hardware and software.

– Applications can be split into four major areas:

• Display of information

• Design

• Simulation

• User Interfaces
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• 1.1 Display of Information

– Classical graphics techniques 
arose as a medium to convey 
information among people:

• 4,000 years ago -- Babylonians: 
floor plans of buildings on stones

• 2,000 years ago -- Greeks: 
Architectural ideas 

– Now we have Computer-based 
drafting  programs
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• For centuries -- Cartographers have 
developed maps to display celestial 
and geographical information.

– Now maps can be developed and 
manipulated in real-time over the 
internet.
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• Over the past 100 years -- workers in statistics have 
explored techniques for generating plots to convey 
information

– Now we have computer plotting packages
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• Medicine poses interesting and important data-
analysis problems

– CAT Scans, MRI’s ultrasound, and other 3D data producing 
technologies
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• The field of Scientific Visualization provides 
graphical tools that help these researchers and 
others interpret the vast quantities of data 
generated
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• 1.2 Design
– Engineering and Architecture are concerned 

with design
• starting with a set of specification

• seek a cost-effective (and esthetic) solution

• This is an iterative process

– The power of interacting with images on the 
screen 

• has been known for at least 40 years.

• and today the use of interactive tools pervades the 
CAD field in areas such as architecture and VLSI 
design
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• 1.3 Simulation

– When did graphics begin to be used?

– Why?

– The field of VR has opened up many new 
horizons.

• Same (or different) image in each eye

• position tracking

• interactive devices

• This has led to training capabilities
– NASA research grant
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• 1.4 User Interfaces

– Our interaction with computers has become 
dominated by a visual paradigm that includes:

• windows,

• icons,

• menus, and 

• a pointing device

• We have become so accustomed to this style of 
interface that we often forget that what we are 
doing is working with computer graphics.
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2. A Graphics System

– There are 5 major elements in our system

• Processor, Memory, Frame Buffer, Input Devices, 
Output Devices
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• 2.1 Pixels and the Frame Buffer
– At present, almost all graphics systems are 

raster-based
• A picture is produced from an array (the raster) of 

picture elements (pixels)

• Def: depth of the frame buffer
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– Definitions:

• Depth of the frame buffer
– 1-bit 

– 8-bit deep

– full-color is 24-bit or more

• Resolution
– the number of pixels in the frame buffer

• Rasterization or scan conversion
– The converting of geometric primitives into pixel 

assignments in the frame buffer
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• 2.2 Output Devices

– The dominate type of display is the Cathode-
ray tube (CRT)

– Def: refresh rate
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– Color CRT’s 

• have three different colored phosphors arranged in 
small groups (typically triads).
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• 2.3 Input Devices

– Most graphics systems provide a keyboard and 
at least one other input device

• mouse

• joystick

• data tablet

– We will study these devices in Chapter 3
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3. Images: 
Physical and Synthetic

• The Usual pedagogical approach:

– construct raster images

• simple 2D entities (points, lines, polygons)

– Define objects based upon 2D

– Because such functionality is supported by most 
present computer graphics systems, we  are going 
to learn to create images here, rather than expand 
a limited model.
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• 3.1 Objects and Viewers

– Two basic entities must be part of any image-
formation process:

• the object

• the viewer

• The object exists in space independent of any 
image-formation process, and of any viewer.
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• What we will study Now
– Both the object and the viewer exist in a 

3D world.  However, the image they 
define is 2D

– The process by which the specification of 
the object is combined with the 
specification of the viewer to produce an 
image is the essence of image formation.

• Future:
– In Chapter 2, we show how OpenGL 

allows us to build simple objects

– In Chapter 9 we learn how to define 
objects in a manner that incorporates 
relationships among objects.
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• 3.2 Light and Images

– Much information was missing from the 
preceding picture:

• We have yet to mention light!
– If there were no light sources the objects would be dark, 

and there would be nothing visible in our image.

• We have not mentioned how color enters the 
picture

• Or, what are the effects of different kinds of 
surfaces on the objects.
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– Taking a more physical approach, we can start 
with the following arrangement:

• The details of the interaction between light and the 
surfaces of the object determine how much light 
enters the camera.
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– Light is a form of electromagnetic radiation:
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• 3.3 Ray Tracing

– We can start building an imaging model by 
following light from a source.
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– Ray tracing is an image formation technique 
that is based on these ideas and that can form 
the basis for producing computer generated 
images.
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4. The Human Visual System

• Our extremely complex visual system has all the 
components of a physical imaging system, such as a 
camera or a microscope.
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5. The Pinhole Camera

– What is one?

– A Pinhole camera is a box 

• with a small hole in the center on one side, 

• and the film on the opposite side
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– Pinhole camera near Cliff House in San Francisco
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6. The Synthetic Camera Model

– Consider the imaging system shown here:
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– A few Basic principles:

• First, the specification of the objects is independent 
of the specification of the viewer.

– In a graphics library we would expect separate functions 
for specifying objects and the viewer.

• Second, we can compute the image using simple 
trigonometric calculations
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• Because of this, we can move the image plane in 
front of the lens (call this the projection plane) and 
end up with:

• In Chapter 5, we discuss this process in detail and 
derive the relevant mathematical formulas
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• We must also consider the limited size of the image.  

• Therefore, we must discuss clipping:
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7. The Programmer’s Interface

– There are numerous ways that a user can interact 
with a graphics system.

• In a typical paint program it would look like:
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• 7.1 Application Programmer’s Interfaces

– What is an API?

– Why do you want one?
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– If we are to follow the synthetic camera model, 
we need functions in the API to specify:

• Objects

• Viewer

• Light Sources

• Material Properties
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– Objects are usually defined by a set of vertices

• The following code fragment defines a triangular 
polygon in OpenGL

– glBegin(GL_POLYGON);

– glVertex3f(0.0,0.0,0.0);

– glVertex3f(0.0,1.0,0.0);

– glVertex3f(0.0,0.0,1.0);

– glEND();
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– We can define a viewer or camera in a variety 
of ways

• We can identify four types of necessary 
specifications:

– Position

– Orientation

– Focal length

– Film plane
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– Light sources can be defined by their location, 
strength, color, and directionality.

• API’s provide a set of functions to specify these 
parameters for each source.

– Material properties are characteristics, or 
attributes, of the objects

• such properties are usually defined through a series 
of function calls at the time that each object is 
defined.
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• 7.2 A Sequence of Images

– In Chapter 2 , we begin our detailed discussion 
of the OpenGL API

– Color Plates 1 through 8 show what is possible 
with available hardware and a good API, but 
also they are not difficult to generate
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8. Graphics Architectures

– On one side of the API is the application program.  
On the other is some combination of hardware 
and software that implements the functionality of 
the API

– Researchers have taken various approaches to 
developing architectures to support graphics APIs
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– Early systems used general purpose computers

• single processing unit

• In the early days of computer graphics, computers 
were so slow that refreshing even simple images, 
containing a few hundred line segments, would 
burden an expensive computer
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• 8.1 Display Processors

– The earliest attempts to build a special purpose 
graphics system were concerned primarily with 
relieving the task of refreshing the display
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• 8.2 Pipeline Architectures
• The major advances in graphics architectures 

parallel closely the advances in workstations.

• For computer graphics applications, the most 
important use of custom VLSI circuits has been in 
creating pipeline architectures

• A simple arithmetic pipeline is shown here:
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• If we think in terms of processing the geometry of 
our objects to obtain an image, we can use the 
following block diagram:

• We will discuss the details of these steps in 
subsequent chapters.
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• 8.3 Transformations

– Many of the steps in the imaging process can 
be viewed as transformations between 
representations of objects in different 
coordinate systems

• for example: from the system in which the object 
was defined to the system of the camera 

– We can represent each change of coordinate 
systems by a matrix

• We can represent successive changes by multiplying 
(or concatenating) the individual matrices into a 
single matrix.
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• 8.4 Clipping

– Why do we Clip?

– Efficient clipping algorithms are developed in 
Chapter 7
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• 8.5. Projection

– In general three-dimensional objects are kept 
in three dimensions as long as possible, as they 
pass through the pipeline.  

– Eventually though, they must be projected into 
two-dimensional objects.

– There are various projections that we can 
implement.

– We shall see in Chapter 5 that we can 
implement this step using 4 x 4 matrices, and, 
thus, also fit it into the pipeline.
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• 8.6 Rasterization

– Finally, our projected objects must be 
represented as pixels in the frame buffer.

– We discuss this scan-conversion or 
rasterization process in Chapter 7
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• 8.7 Performance Characteristics

– There are two fundamentally different types of 
processing 

• Front end -- geometric processing, based on the 
processing of vertices

– ideally suited for pipelining, and usually involves floating-
point calculations.

– The geometry engine developed by SGI was a VLSI 
implementation for many of these operations in a special 
purpose chip. These became the basis for a series of 
graphics workstations.

• Back end -- involves direct manipulation of bits in 
the frame buffer.

– Ideally suited for parallel bit processors.
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9. Summary

– In this chapter we have set the stage for our top-
down development of computer graphics.

• Computer graphics is a method of image formation that 
should be related to classical methods -- in particular to 
cameras

• Our next step is to explore the application side of 
Computer Graphics programming

– We will use the OpenGL API
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10. Suggested Readings

• Journals:

– Computer Graphics -- ACM

– IEEE Compute Graphics and Applications

• Textbooks:

– Foley et.al.

– Hearn and Baker

– Hill
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UNIT-2
Input and Interaction
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Outlines

Interaction

Input Devices

Clients &servers

Display lists and modeling

Programming Event-Driven Input

• Menus, picking 

Graphical User Interface

Animating Interactive Program

Logical Operation
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Introduction

Basic Interactive Paradigm

 It is established by Ivan Sutherland (MIT 1963) 

to characterize interactive computer graphics

• Step 1: User sees an object on the display

• Step 2: User points to (picks) the object with an 

input device (light pen, mouse, trackball)

• Step 3: Object changes (moves, rotates, morphs)

• Step 4: Return to Step 1.
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Interaction

 In the field of computer graphics, interaction refers to the manner 
in which the application program communicates with input and 
output devices of the system. 

 For e.g. Image varying in response to the input from the user. 

 OpenGL doesn‟t directly support interaction in order to maintain 
portability. However, OpenGL provides the GLUT library. This 
library supports interaction with the keyboard, mouse etc and 
hence enables interaction. The GLUT library is compatible with 
many operating systems such as X windows, Current Windows, 
Mac OS etc and hence indirectly ensures the portability of 
OpenGL. 
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Introduction

Input Devices

 The input devices can be considered in two 

distinct ways.

• Physical Devices: is the way that we take to look

• Logical Devices: is to treat the devices in terms of 

what they do from the perspective of the program.
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Introduction

Physical Devices

mouse trackball
light pen

data tablet joy stick space ball
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Introduction

Logical Device

 The behavior of the logical devices is 

characterized by two factors.

• Measurement.

• Time to return the measurement.

 Six Types

• String: ASCII strings

• Locator: position

• Pick: identifier of an object

• Choice: one of the discrete items

• Valuator: return floating point number

• Stroke: return array of positions
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Introduction

Input Modes

 It can be described in terms of two entities

• Measure Process: is what the device returns

• Trigger Process: is a physical input device that the 

user can signal the computer.

 We can obtain the measure of a device in the 

three Modes

• Request Mode

• Sample Mode

• Event Mode
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Introduction

Input Modes

 Request Mode

• The measure of the device is not returned to the 

program until the device is triggered.

• Example: The user can erase, edit, or correct until 

enter (return) key (the trigger) is depressed
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Introduction

Input Modes

 Sample Mode

• The measure is returned as soon as the function 

call is encountered.

 Event Mode

• Each input device can be triggered at an arbitrary 

time by a user.

• Each trigger generates an event whose measure is 

put in an event queue.
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Event-Driven Input Programming

Introduction

 The event-driven input is developed through 

the callback mechanism

• Window: resize

• Mouse: click one or more buttons

• Motion: move mouse

• Keyboard: press or release a key

• Idle: nonevent

63



Event-Driven Input Programming

Pointing Device: Mouse Callback

 Setting: glutMouseFunc(mymouse)

 Prototype:

• button: GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON,  

GLUT_RIGHT_BUTTON

• state: GLUT_UP, GLUT_DOWN

• x, y: position in window  

void myMouse(GLint button, GLint state, 

GLint x, GLint y)
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Event-Driven Input Programming

Keyboard Events: glutKeyboardFunc()

 Trigger Situations

• The mouse is in the window 

• One of the keys is pressed.

 Measurements 

• ASCII Code of the Key

• Mouse Location

void mykeyboard(unsinged char key, 

GLint x, GLint y)
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Event-Driven Input Programming

Keyboard Events: 

 A function glutGetModifiers() can be used to 

get the meta keys, such as Control, Alt keys.

void myKeyboard(unsigned char key, int x, int y){

if(key == 'q' || key == 'Q') exit(0);

}/* End of myKeyboard */

glutKeyboardFunc(myKeyboard);

Example: Exit the Program
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Event-Driven Input Programming

Window Resizing Event:glutReshapeFunc()

 It is triggered when the size of window is 

changed.

 Issues

• Do we redraw all the objects?

• What do we do if the aspect ratio of the new 

window is different from the old one?

• Do we change the sizes of attributes of new 

primitives?

There is no single answer to any of these questions.
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Event-Driven Input Programming

Window Resizing Event:glutReshapeFunc()

void myReshape(int width, int height){

/* set the sub menu */

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0, width, 0.0, height);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

/* set the main menu */

glViewPort(0, 0, width, height);

}/* End of myReshape */
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Event-Driven Input Programming

Display & Idle Callback

 Display Callback: glutDisplayFunc()

• This callback can be invoked in different way to 

avoid unnecessary drawings.

 Idle Callback

• It is invoked when there are no other events.

• The default of idle callback is NULL.

• glutidleFunc(myIdle)

glutPostRedisplay();
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Event-Driven Input Programming

Callback Enable and Disable

 The callback function can be changed during 

the program execution.

 We can disable a callback function by setting 

its callback function to NULL

void myMouse(int button, int state, int x, int y){

if(button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)

glutIdleFunc(NULL);

}/* End of myKeyboard */
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Event-Driven Input Programming

71

int main(int argc, char** argv){

/* initialize the interaction */

glutInit(&argc, argv);

/* specify the window properties and create window */

………

glutDisplayFunc(myDisplay);

glutIdleFunc(myIdle);

glutKeyboardFunc(myKeyboard);

glutMouseFunc(myMouse);

glutReshapeFunc(myReshape);

myInit();

/* start to run the program */

glutMainLoop();

}/* End of main */



Graphical User Interface: Menu

Menu Description

 GLUT provides pop-up menus for users to 

create sophisticated interactive applications.

 The menus can be developed in a hierarchical 

manner.

Development Steps

 Register a callback function to each menu

 Add the items to the menu

 Link the menu to a particular mouse button.
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Graphical User Interface: Menu

Example:

void myInit(){

/* set the sub menu */

int sub_menu = glutCreateMenu(mySubMenu);

glutAddMenuEntry("Increase Square Size", 2);

glutAddMenuEntry("Decrease Square Size", 3);

/* set the main menu */

glutCreateMenu(myMenu);

glutAddMenuEntry("Quit", 1);

glutAddSubMenu("Resize", sub_menu);

glutAttachMenu(GLUT_RIGHT_BUTTON);

}/* End of myInit */
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Callback Function

Callback Function



Graphical User Interface: Menu

Example:

void myMenu(int id){

switch(id){

case 1: exit(0);

}/* End of switch */

}/* End of myMenu */

void mySubMenu(int id){

}/* End of myMenu */
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Animating Interactive Program

Description

 The function of animation is to create a 

picture where one or more objects are moving.

 It is an important part of computer graphics.

 Examples

• An animated character walks across the display

• We may move the view over time.
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Animating Interactive Program

Animation in Movie

 Motion is achieved by taking a sequence of 

pictures and projecting them at 24 frames/sec.

• Step1: Each frame is moved to into position behind 

the lens.

• Step2: The shutter is opened and frame is 

displayed.

• Step3: The shutter is momentarily closed.

• Step4: Go to Step 1.
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The key reason that motion picture projection works is 
that each frame is complete when it is displayed.



Animating Interactive Program

Animation Problem

77

Open_Window();

for(int i=0; i < 1000000; i++){

Clear_Window();

Draw_Frame(i);

Wait();

}/* End of for-loop */

Problem: it doesn’t display completely drawn frames; 
instead, you watch the drawing as it happens 



Animating Interactive Program

Double Buffering

 Hardware/Software supplies two complete 

color buffers.

• Front Buffer: the one for displaying

• Back Buffer: the one for drawing.

 The objective is to redisplay efficiently so that 

we can’t notice the clearing and redrawing.

• One manifestation occurs if the display cannot be 

drawn in a single refresh cycle.
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Animating Interactive Program

Double Buffering

 Remark: It does not speed up the drawing 

process, it only ensures that we never see a 

partial display. 
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Motion = Redraw + Swap



Animating Interactive Program

Double Buffering

80

OpenGL:

glutInitDisplayMode (GLUT_RGB | GLUT_DOUBLE)

glutSwapBuffers(): swap these two buffers.

Open_Window(Double_Buffer);

for(int i=0; i < 1000000; i++){

Clear_Window();

Draw_Frame(i);

Swap_Buffer();

}/* End of for-loop */



Animating Interactive Program

Example: Rotating Square

 Draw a square rotating on the screen

 Rotation Start: press the left button of mouse.

 Rotation Stop: press the right button of mouse.
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Animating Interactive Program

Example: Rotating Square
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/* callback functions */

void myDisplay(); /* display callback */

void myIdle(); /* idle callback */

void myKeyboard(unsigned char, int, int);/* keyboard callback */

void myMouse(int, int, int, int); /* mouse callback */

void myTimer(int); /* timer callback */

/* member function */

void myInit();

void mySpin();

/* attribute */

float theta = 0.0;



Animating Interactive Program
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int _tmain(int argc, char** argv){

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

glutInitWindowSize(500, 500);

glutInitWindowPosition(0, 0);

glutCreateWindow("Double Buffer");

glutDisplayFunc(myDisplay);

glutMouseFunc(myMouse);

myInit();

glutMainLoop();

return 0;

}/* End of main */



Animating Interactive Program
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void myMouse(int button, int state, int x, int y){

switch (button) {

case GLUT_LEFT_BUTTON:

if (state == GLUT_DOWN)

glutIdleFunc(mySpin);

break;

case GLUT_MIDDLE_BUTTON:

case GLUT_RIGHT_BUTTON:

if (state == GLUT_DOWN)

glutIdleFunc(NULL);

break;

default:

break;

}/* End of switch */

}/* End of GasketDisplay */



Animating Interactive Program
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void mySpin(void){

/* increase the theta */

theta += 2; /* increase 2 degree */

if(theta >= 360.0) theta = 0.0;

glutPostRedisplay();

}/* End of mySpin */



Animating Interactive Program

Example: Rotating Square
void myDisplay(){

glClear(GL_COLOR_BUFFER_BIT);

float thetar = theta * 3.14159 / (180);

glBegin(GL_POLYGON);

glVertex2f(cos(thetar), sin(thetar));

glVertex2f(sin(thetar), -cos(thetar));

glVertex2f(-cos(thetar), -sin(thetar));

glVertex2f(-sin(thetar), cos(thetar));

glVertex2f(cos(thetar), sin(thetar));

glEnd();

glFlush();

glutSwapBuffers();

}/* End of GasketDisplay */
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Animating Interactive Program

Timer

 The objective is to avoid the blur effect of the 

display due to many redrawing.

 The timer is used to control the redrawing 

times per second.

 Timer Callback

• Execution of this function starts a timer to delay the 

event loop for “delay” milliseconds.

• When timer has counted down, callback is invoked.

glutTimerFunc(int delay, 
void(*timer_func)(int),  int value);
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Animating Interactive Program

Timer

 Because GLUT allows only a single timer, the 

recursive mechanism should be used to 

execute the callback.

void myTimer(int value){

glutTimerFunc(1000/value, myTimer, value);

}/* End of myTimer */
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Logical Operation

Description

 The logical operations are the ways to 

combine the source and destination pixels.

• Source Pixel: the pixel that we want to write

• Destination Pixel: the pixel in the drawing buffer 

that the source pixel will affect.
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Logical Operation

Description

 There are 16 possible functions between two 

bits.

 Each function defines a writing mode. 

Writing Mode

 Replacement/Copy Mode

• It is the default mode of OpenGL

• It replaces the destination pixel with source one.

 XOR Mode

• It combines two bits through exclusive operation
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Logical Operation

Mode Change Operators

glEnable(GL_COLOR_LOGIC_OP);

glLogicOp(GL_XOR);
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glEnable(GL_COLOR_LOGIC_OP);

glLogicOp(GL_COPY)

glBegin(GL_POLYGON);

glVertex2f(cos(thetar), sin(thetar));

glVertex2f(sin(thetar), -cos(thetar));

glVertex2f(-cos(thetar), -sin(thetar));

glEnd();

glLogicOp(GL_XOR);



Logical Operation

XOR Mode

 We return to the original state, if we apply xor 

operation twice.

 It is generally used for erasing objects by 

simply drawing it a second time.
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Chapter 4

Geometric Objects and 

Transformations



CS 480/680 Chapter 4 -- Geometric Objects and Transformations95

 Introduction:

 We are now ready to concentrate on three-dimensional graphics

 Much of this chapter is concerned with matters such as 

 how to represent basic geometric types

 how to convert between various representations

 and what statements we can make about geometric objects, independent 

of a particular representation.



1. Scalars, Points, and Vectors
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 We need three basic types to define most geometric objects

 scalars

 points

 and vectors

 We can define each in many ways, so we will look at different 

ways and compare and contrast them.



CS 480/680 Chapter 4 -- Geometric Objects and Transformations97

 1.1 The Geometric View

 Our fundamental geometric object is a point.

 In a three-dimensional geometric system, a point is a location in space

 The only attribute a point possesses is its location in space.

 Our scalars are always real numbers.

 Scalars lack geometric properties,

 but we need scalars as units of measurement.
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 In computer graphics, we often connect points with directed 

line segments

 These line segments are our vectors.

 A vector does not have a fixed position 

 hence these segments are identical because their orientation and 

magnitude are identical.
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 Directed line segments can have their lengths and directions changed by 

real numbers or by combining vectors
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 1.2 Coordinate-Free Geometry

 Points exist in space regardless of any reference 

or coordinate system.

 Here we see a coordinate system defined by two axis 

and a simple geometric primitive.  We can refer to 

points by their coordinates

 If we remove the axes, we can no longer specify 

where the points are, except for in a relative term 
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 1.3 The Mathematical View: Vector and Affine Spaces
 We can regard scalars, points and vectors as members of mathematical 

sets;

 Then look at a variety of abstract spaces for representing and 

manipulating these sets of objets.

 The formal definitions of interest to us -- vector spaces, affine spaces, and 

Euclidean spaces -- are given in Appendix B
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 Perhaps the most important mathematical space is the vector 

space

 A vector space contains two distinct entities: vectors and scalars.

 There are rules for combining scalars through two operations: addition 

and multiplication, to form a scalar field

 Examples of scalar are:  

 real numbers, complex numbers, and rational functions

 You can combine scalars and vectors to forma  new vector through

 scalar-vector multiplication and vector-vector addition
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 An affine space is an extension of the vector space that includes an 

additional type of object:

 The point

 A Euclidean space is an extension that adds a measure of size or distance 

 In these spaces, objects can be defined independently of any particular 

representation

 But representation provides a tie between abstract objects and their 

implementation 

 And conversion between representations leads us to geometric 

transformations
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 1.4 The Computer Science View
 We prefer to see these objects as ADTs

 Def: ADT

 So, first we define our objects

 Then we look to certain abstract mathematical spaces to help us with the 

operations among them
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 1.5 Geometric ADTs
 Our next step is to show how we can use our types to perform 

geometrical operations and to form new objects.

 Notation

 Scalars will be denoted a, b, g

 Points will be denoted P, Q, R, ...

 Vectors will be denoted u, v, w, ...

 The magnitude of a vector v is the real number that is denoted by |v| 

 The operation of vector-scalar multiplication has the property that |av| 

= |a||v|
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 The direction of av is the same as the direction of v if a is positive.

 We have two equivalent operations that relate points and vectors:

 First there is the subtraction of two points P and Q.  This is an 

operation that yields a vector

o v = P - Q 

o or P = v + Q
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 Second there is the head-to-tail rule that gives us a convenient way of 

visualizing vector-vector addition.
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 1.6 Lines

 The sum of a point and a vector leads to the notion of a line in 

an affine space 

 Consider all points of the form 

 P(a) = P0+ad

o P0 is an arbitrary point

o d is an arbitrary vector 

o a is a scalar

o This form is sometimes called the parametric form, because we 

generate pints by varying the parameter a.



CS 480/680 Chapter 4 -- Geometric Objects and Transformations109

 1.7 Affine Sums

 In an Affine Space 

 the following are defined:

 the addition of two vectors, 

 the multiplication of a vector by a scalar, 

 and the addition of a vector and a point 

 The following are not:

 the addition of two arbitrary points 

 and the multiplication of a point by a scalar.

 There is an operation called Affine Addition that is. 
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 Affine Addition:

 For any point Q, vector v, and positive scalar a

 P = Q + av describes all the points on the line Q in the direction of v

as shown
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 1.8 Convexity

 Def: Convex object

 Def: Convex Hull
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 1.9 Dot and Cross Products

 Dot product

 the dot product of u and v is written uv 

 If uv=0, then u and v are orthogonal

 In euclidean space,  |u|2 = uu 

 The angle between two vectors is given by

 cos q = (uv)/(|u| |v|)
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 Cross product

 We can use two non parallel vectors u and v to determine a third vector n

that is orthogonal to them n=u x v 
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 1.10 Planes

 Def: Plane

 Def: normal to the plane



2. Three-Dimensional Primitives
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 In a three-dimensional world, we can have a far greater variety 

of geometric objects than we could in two-dimensions.

 In 2D we had curves, 

 Now we can have curves in space
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 In 2D we had objects with interiors, 

such as polygons, 

 Now we have surfaces in space

 In addition, now we can have objects 

that have volume
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 We face two issues when moving from 2D to 3D.

 First, the mathematical definitions of these objects becomes complex

 Second, we are interested in only those objects that lead to efficient 

implementations in graphic systems

 Three features characterize 3D objects that fit well  with existing graphics 

hardware and software:

 1. The objects are described by their surfaces and can be thought of as 

hollow.

 2. The objects can be specified through a s set of vertices in 3D

 3. The objects either are composed of or can be approximated by flat 

convex polygons.
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 We can understand why we set these conditions if we consider what most 

modern graphics systems do best:

 They render triangles 

 Def: tessellate



3. Coordinate Systems and Frames
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 In a three-dimensional vector space, we can represent 

any vector w uniquely in terms of any three linearly 

independent vectors v1, v2, and v3, as

 w = a1v1+a2v2+a3v3

 The scalars a1, a2, and a3 are the components of w 

with respect to the basis functions
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 We can write the representation 

of w with respect to this basis as 

the column matrix

 We usually think of basis vectors 

defining a coordinate system

1

2

3

a

a

a

a
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 However, vectors have no position, so this 

would also be appropriate

 But a little more confusing.

 Once we fix a reference point (the origin), we 

will feel more comfortable, 

 because the usual convention for drawing 

the coordinate axes as emerging from the 

origin
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 This representation that requires both the reference point and the basis 

vectors is called a frame.

 Loosely, this extension fixes the origin of the vector coordinate system 

at some point P0.

 So, every vector is defined in terms of the basis vectors 

 and every point is defined in terms of the origin and the basis vectors.

 Thus the representation of either just requires three scalars, so we can 

use matrix representations 
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 3.1 Representations and N-tuples
 Suppose the vectors e1, e2, and e3 form a basis.

 The representation of any vector, v, is given by the components (a1, a2, 

a3) where

 v = a1e1 + a2e3 + a3e3
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 3.2 Changes in Coordinate Systems
 Frequently, we are required to find how the representation of a vector 

changes when we change the basis vectors.

 Suppose {v1, v2, v3} and {u1, u2, u3} are two bases

 Each basis vector in the second can be represented in terms of the first 

basis (and vice versa)

 Hence:

o u1 = g11v1+g12v2+g13v3

o u2 = g21v1+g22v2+g23v3

o u3 = g31v1+g32v2+g33v3
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 The 3x3 matrix is

 is defined by the scalars and

 and M tells us how to go one way, and the inverse of M tells us how to 

go the other way.

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

M

g g g

g g g

g g g
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3 3
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 This change in basis leave the origin unchanged

 However, a simple translation of the origin, or change of frame, cannot be 

represented in this way
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 3.3 Example of Change of Representation

 Suppose we have some vector w  

 whose representation in some basis is a=[1,2,3]

 We can denote 3 basis vectors v1, v2, and v3.  

 Hence w = v1 + 2v2 + 3v3

 Now suppose we make a new basis from the three vectors v1, 

v2, and v3

 u1 = v1, u2 = v1+v2, u3 = v1+v2+v3

 Then the matrix M is























111

011

001

M
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 The matrix which converts a representation in v1, v2, and v3 to 

one wit u1, u2, and u3 is

 A=(MT)-1

 In the new system b = Aw

 That is w = -u1-u2+3u3
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 3.4 Homogeneous Coordinates

 In order to distinguish between points and vectors…and 

because matrix multiplication in 3D cannot represent a change 

in frames, we introduce homogenous coordinates. (4D data)

 Homogenous coordinates allow us to tie a basis point (origin) 

with the basis vectors.
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 If (v1,v2,v3,P0) and (u1,u2,u3,Q0) are two frames, then we 

can represent the second in terms of the first as

 These equations can be written as:

 Where M is now:
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3132121111
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 We can also use M to compute the changes in the 

representations directly.  

 Suppose a and b are homogenous-coordinate representations of either two 

points or two vectors in the two frames then

 a=MTb

 There are other advantages of using homogenous coordinate 

systems. Perhaps the most important is the fact that all affine 

transformations can be represented as matrix multiplications in  

homogenous coordinates.
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 3.5 Example of Change in Frames
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 3.6 Working with Representations
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 3.7 Frames and ADTs
 Thus far, our discussion has been mathematical.  

 Now we begin to address the question of what this has to do with 

programming
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 3.8 Frames in OpenGL
 In OpenGL we use two frames:

 The camera frame

 The world frame.

 We can regard the camera frame as fixed 

 (or the world frame if we wish)

 The model-view matrix positions the world frame relative to the 

camera frame.

 Thus, the model-view matrix converts the homogeneous-coordinate 

representations of points and vectors to their representations in the 

camera frame.
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 Because the model-view matrix is part of the state of the system there is 

always a camera frame and a present-world frame.  

 OpenGL provides matrix stacks, so we can store model-view matrices 

 (or equivalently, frames)
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 As we saw in Chapter 2, the camera is at the origin of its frame

 The three basis vectors correspond to:

o The up direction of the camera (y)

o The direction the camera is pointing (-z)

o and a third orthogonal direction

 We obtain the other frames (in which to place objects) by performing 

homogeneous coordinate transformations

o We will learn how to do this in Section 4.5

o In Section 5.2 we use them to position the camera relative to our 

objects.
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 Let’s look at a simple example:

 In the default settings, the camera and the world frame coincide with 

the camera pointing in the negative z direction

 In many applications it is natural to define objects near the origin.

 If we regard the camera frame as fixed, then the model-view matrix:

 moves a point (x,y,z) in the world frame to the point (x,y,z-d) in the 

camera frame.

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

A
d
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 Thus by making d a suitably large positive number, we move the objets 

in front of the camera

 Note that, as far as the user - who is working in world coordinates - is 

concerned, they are positioning objects as before

 The model-view matrix takes care of the relative positioning of the 

frames



4. Modeling a Colored Cube
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 We now have the tools we need to build a 3D graphical 

application.

 Consider the problem of drawing a rotating cube on the screen
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 4.1 Modeling of a Cube

 typedef Glfloat point3[3];

 point3 vertices[8] = {{-1.0,-1.0,-1.0}, {1.0,-1.0,-1.0}, {1.0,1.0,-1.0}, 

{-1.0,1.0,-1.0}, {-1.0,-1.0,1.0}, {1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-

1.0,1.0,1.0}};

 glBegin(GL_POLYGON);

 glVertex3fv(vertices[0]);

 glVertex3fv(vertices[3]);

 glVertex3fv(vertices[2]);

 glVertex3fv(vertices[1]);

 glEnd();
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 4.2 Inward- and Outward-Pointing Faces
 We have to be careful about the order in which we specify our vertices 

when we are defining a three-dimensional polygon

 We call a face outward facing if the vertices are traversed in a 

counterclockwise order when the face is viewed from the outside.

 This is also known as the right-hand rule
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 4.3 Data Structures for Object Representation
 We could describe our cube

 glBegin(GL_POLYGON)

o six times, each followed by four vertices

 glBegin(GL_QUADS)

o followed by 24 vertices

 But these repeat data....

 Let’s separate the topology from the geometry.
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 4.4 The Color Cube
typedef Glfloat point3[3];

point3 vertices[8] = {{-1.0,-1.0,-1.0}, {1.0,-1.0,-1.0}, {1.0,1.0,-1.0}, {-

1.0,1.0,-1.0}, {-1.0,-1.0,1.0}, {1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

Glfloat colors[8][3]={0.0,0.0,0.0}, {1.0,0.0,0.0}, {1.0, 1.0, 0.0}, {0.0,1.0,0.0}, 

0.0,0.0,1.0}, {1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

void quad(int a, int b, int c, int d)

{

glBegin(GL_POLYGON);

glColor3fv(colors[a]); glVertex3fv(vertices[a]);

glColor3fv(colors[a]); glVertex3fv(vertices[b]);

glColor3fv(colors[a]); glVertex3fv(vertices[c]);

glColor3fv(colors[a]); glVertex3fv(vertices[d]);

glEnd();

}
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 4.5 Bilinear Interpolation
 Although we have specified colors for the vertices of the cube, the 

graphics system must decide how to use this information to assign colors 

to points inside the polygon.

 Probably the most common method is bilinear interpolation.
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 Another method is Scan-line interpolation

 pushes the decision off until rasterization.

 OpenGL uses this method for this as well as other values.

 First you project the polygon

 Then convert the colors with each scan line
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 4.6 Vertex Arrays
 Vertex arrays provide a method for encapsulating the information in our 

data structure such that we could draw polyhedral objects with only a few 

function calls.

 Rather than the 60 OpenGL calls:

o six faces, each of which needs a glBegin, a glEnd, four calls to 

glColor, and four calls to glVertex.

 There are 3 steps in using vertex arrays

 First, enable the functionality of vertex arrays.

 Second, we tell OpenGL where and in what format the arrays are.

 Third, we render the object
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glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer(3, GL_FLOAT, 0, colors);

Glubyte cubeIndices[24]={0,3,2,1,2,3,7,6,0,4,7,3,1,2,6,5, 

4,5,6,7,0,1,5,4};

 We now have a few options regarding how to draw the arrays

for(i=0;i<6;i++)

glDrawElements(GL_POLYGON, 4, GL_UNSIGNED_BYTE, 

&cubeIndeces[4*i]);

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, 

cubeIndeces);



5. Affine Transformations
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 A transformation is a function that takes a point (or vector) and 

maps it into another .
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 We can represent this as:

 Q=T(P) and v=R(u)

 If we write both the points and vectors in homogeneous coordinates, then 

we can represent both vectors and points in 4-D column matrices and 

define a single function

 q=f(p) and v=f(u)

 This is too general, but if we restrict it to linear functions, then we can 

always write it as

 v = Au

 where v and u are column vectors (or points) and A is a square matrix.
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 Therefore, 

 we need only to transform the homogeneous coordinate 

representation of the endpoints of a line segment to determine 

completely a transformed line.

 Thus, we can implement our graphics systems as a pipeline that passes 

endpoints through affine transformation units, and finally generate the 

line at rasterization stage.

 Fortunately, most of the transformations that we need in computer 

graphics are affine.

 These transformations include rotation, translation, and scaling.

 With slight modifications, we can also use these results to describe the 

standard and parallel projections.



6. Translation, Rotation, and 

Scaling
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 In this section, 

 First, we show how we can describe the most important affine 

transformations independently of any representation.

 Then we find matrices that describe these transformations

 In section 4.8 we shall see how these transformations are 

implemented in OpenGL
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 6.1 Translation

 Translation is an operation that displaces points by a fixed 

distance in a given direction

 To specify a translation, we need only to specify a displacement 

vector d
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 6.2 Rotation
 Rotation is more difficult to specify than translation, because more 

parameters are involved

 Let’s start with 2D rotation about the origin

 These equations can be written in matrix form as:

c o s s in

s in c o s

x x

y y

q q

q q

      
     

     



CS 480/680 Chapter 4 -- Geometric Objects and Transformations155

 We expand this to 3D in Section 4.7

 Note that there are three features of this transformation that extend to 

other rotations.

 1) There is one point - the origin - that is unchanged by the rotation.  

This is called a fixed point.

 2) We can define positive rotations about other axes

 3) 2D rotation in the plane is equivalent to 3D rotation about the x 

axis.
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 We can use these observations to define a general 3D rotation that is 

independent of the frame.

 To do this we must specify:

o a fixed point: Pf

o a rotation angle: q

o a line or vector about which to rotate:
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 Rotations and translation are known as rigid-body transformations.

 No combination can alter the shape of an object,

 They can alter only the object’s location and orientation

 The transformation given in this figure are affine, but they are not rigid-

body transformations
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 6.3 Scaling
 Scaling is an affine non-rigid body transformation.  

 Scaling transformations have a fixed point



CS 480/680 Chapter 4 -- Geometric Objects and Transformations159

 Hence, to specify a scaling, 

 we can specify a fixed point, 

 a direction in which we wish to scale, 

 and a scale factor a.

o For a > 1, the object gets longer

o for 0 <= a < 1 the object get smaller

o Negative values of a give us reflection



7. Transformations in 

Homogeneous Coordinates
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 In most graphics APIs we work with a representation in 

homogeneous coordinates.  

 And each affine transformation is represented by a 4x4 matrix 

of the form:

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

0 0 0 1

M

a a a a

a a a a

a a a a
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 7.1 Translation
 Translation displaces points to a new position defined by a displacement 

vector.

 If we move p to p’ by displacing by a distance d then

o p’ = p + d

o or  p’ = Tp

o where 

o T is called the translation matrix

1 0 0

0 1 0
1

0 0 1

0 0 0 1
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 7.2 Scaling
 A scaling matrix with a fixed point at the origin allows for independent 

scaling along the coordinate axes.

 x’=bxx

 y’=byy

 z’=bzz

 These three can be combined in homogeneous for as

 p’=Sp

, ,
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0 0 0
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0 0 0
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 7.3 Rotation
 We first look at rotation with a fixed point at the origin.

 We can find the matrices for rotation about the individual axes directly 

from the results of the 2D rotation developed earlier.

 Thus, 

o x’=x cos q - y sin q

o y’=x sin q + y cos q

o z’ = z

o of p’ = Rzp

c o s s in 0 0

s in c o s 0 0
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0 0 0 1
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 We can derive the matrices for rotation about the x and y axes through an 

identical argument.

 And we can come up with:

1 0 0 0

0 c o s s in 0
( )

0 s in c o s 0

0 0 0 1

x xR R
q q

q
q q
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 7.4 Shear
 Although we can construct any affine transformation from a sequence of 

rotations, translations, and scaling, there is one more affine 

transformation that is of such importance that we regard it as a basic type, 

rather than deriving it from others.
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 Using simple trigonometry, we can see that each shear is characterized by 

a single q

 The equation for this shear is:

 x’= x + y cot q,  y’= y, z’= z

 Leading to the shear matrix :

1 c o t 0 0

0 1 0 0
( )

0 0 1 0

0 0 0 1

xH

q

q

 

 

 
 

 
  



8. Concatenation of 

Transformations
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 In this section, we create examples of affine transformations by 

multiplying together, or concatenating, sequences of basic 

transformations that we just introduced.

 This approach fits well with our pipeline architectures for implementing 

graphics systems.
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 8.1 Rotation About a Fixed Point
 In order to do this:

 You do this:
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 8.2 General Rotation
 An arbitrary rotation about the origin 

can be composed of three successive 

rotations about the tree axes.
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 8.3 The Instance Transformation
 Objects are usually defined in their own frames, 

with the origin at the center of mass, and the sides 

aligned with the axes.

 The instance transformation is applied as follows:

 First we scale

 Then we orient it with a rotation matrix

 Finally we translate it to the desired orientation.
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 8.4 Rotation About an Arbitrary Axis
 In order to do this:

 We move the fixed point to the origin

 Do the rotations

 Translate back



9. OpenGL Transformation 

Matrices
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 In OpenGL there are three matrices that are part of the state.

 We shall use only the model-view matrix in this chapter.

 All three can be manipulated by a common set of functions, 

 And we use glMatrixMode to select the matrix to which the operations 

apply.
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 9.1 The Current Transformation Matrix
 This is the matrix that is applied to any vertex that is defined subsequent 

to its setting.

 If we change the CTM we change the state of the system.

 The CTM is part of the pipeline

 Thus, if p is a vertex, the pipeline produces Cp

 The functions that alter the CTM are:

 Initialization (C  I)

 Post-Multiplication (C  CT)
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 9.2 Rotation, Translation, and Scaling
 In OpenGL, 

 the matrix that is applied to all primitives is the product of the model-

view matrix (GL_MODELVIEW) and the projection matrix 

(GL_PROJECTION)

 We can think of the CTM as the product of these two.
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 We can load a matrix with

 glLoadMatrixf(pointer_to_matrix);

 or set it to the identity with

 glLoadIdentity( );

 Rotation, translation, and scaling are provided through three functions:

 glRotate(angle, vx, vy, vz);

o angle is in degrees

o vx, vy, and vz are the components of a vector about which we wish 

to rotate.

 glTranslate(dx, dy, dz);

 glScale(sx, sy, sz);
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 9.3 Rotation About a Fixed Point in OpenGL
 In Section 4.8 we showed that we can perform a rotation about a fixed 

point other than the origin. 

 (translate, rotate, and translate back)

 Here is how you do it in OpenGL

o glMatrixMode(GL_MODELVIEW);

o glLoadIdentity( );

o glTranslatef(4.0, 5.0, 6.0);

o glRotatef(45.0, 1.0, 2.0, 3.0);

o glTranslatef(-4.0, -5.0, -6.0);
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 9.4 Order of Transformations
 You might be bothered by the apparent reversal of the function calls.

 The rule in OpenGL is this:

 The transformation specified most recently is the one applied first.

o C   I

o C   CT

o C   CR

o C   CT

 each vertex that is specified after the model-view matrix has been set 

will be multiplied by C thus forming the new vertex

o q = Cp
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 9.5 Spinning of the Cube

void display(void)

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity( );

glRotatef(theta[0], 1.0, 0.0, 0.0);

glRotatef(theta[1], 0.0, 1.0, 0.0);

glRotatef(theta[2], 0.0, 0.0, 1.0);

colorcube( );

glutSwapBuffers( );

}



CS 480/680 Chapter 4 -- Geometric Objects and Transformations179

void mouse(int btn, int state, int x, int y)

{

if(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN) 

axis = 0;

if(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN) 

axis = 1;

if(btn==GLUT_RIGHT_BUTTON && state == GLUT_DOWN) 

axis = 2;

}
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void spinCube( )

{

theta[axis] += 2.0;

if (theta[axis] > 360.0)  theta[axis] -= 360.0;

glutPostRedisplay( );

}

void mkey(char key, int mousex, int mousey)

{

if(key==‘q’ || key==‘Q’) 

exit( );

}
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 9.6 Loading, Pushing, and Popping Matrices
 For most purposes, we can use rotation, translation , and scaling to form a 

desired transformation matrix.

 In some circumstances, however, such as forming a shear matrix, it is 

easier to set up the matrix directly.

 glLoadMatrixf(myarray);

 Note: This is a column major array.

 We can also multiply on the right of the current matrix by using

 glMultMatrixf(myarray);
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 Sometimes we want to perform a transformation and then return to the 

same state as before its execution.

 We can push the current transformation matrix on a stack and recover it 

later.

 Thus we often see the sequence

 glPushMatrix( );

 glTransletef( . . . );

 glRotatef( . . . );

 glScalef( . . . );

 // draw object here

 glPopMatrix( );



10 Interfaces to Three-Dimensional 

Applications
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 This section describes combination of 

devices (keyboard and mouse) as well as 

trackballs and virtual trackballs to achieve 

better input.



11. Quaternions

CS 480/680 Chapter 4 -- Geometric Objects and Transformations184

 Quaternions are an extension of complex numbers that 

provide an alternative method for describing and 

manipulating rotations.

 Although less intuitive, they provide advantages for animation 

and hardware implementations of rotation



12. Summary and Notes
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 In this chapter, we have presented two different-but ultimately 

complementary-points of view regarding the mathematics of Computer 

Graphics.

 One is the mathematical abstraction of the objects with which we work in 

computer graphics is necessary if we are to understand the operations that 

we carry out in our programs

 The other is that transformations  (and homogeneous coordinates) are the 

basis for implementations of graphics systems

 Finally we provided the set of affine transformations supported by OpenGL, 

and discussed ways that we could concatenate them to provide all affine 

transformations.



13. Suggested Readings
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 Homogeneous coordinates arose in Geometry(51) and were alter 

discovered by the graphics community(81)

 Their use in hardware started with the SGI Geometry Engine (82)

 Modern hardware architectures use Application Specific Integrated Circuits 

(ASIC’s) that include homogeneous coordinate transformations

 Quaternions were introduced to computer graphics by Shoemaker(85) 

for use in animation

 Software tools such as Mathematica(91) and Matlab(95) are excellent aids 

for learning to manipulate transformation matrices



Exercises -- Due next Monday
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 4.5

 4.8

 4.13

 4.17



3D Graphics



Translation



Translation



Rotation



Rotation



Rotation



Scaling

• The matrix expression for the scaling 

transformation of a position P = (xi, yi, zi) relative 

to coordinate origin can be written as:



3D Viewing

• Viewing in 3D involves the following considerations: -

– We can view an object from any spatial position, eg. 

In front of an object, Behind the object, In the middle 

of a group of objects, Inside an object, etc. 

• 3D descriptions of objects must be projected onto the flat 

viewing surface of the output device.



Viewing Coordinates

• Generating a view of an object in 3D is similar to 

photographing the object.

• Whatever appears in the viewfinder is projected onto the 

flat film surface.

• Depending on the position, orientation and aperture size 

of the camera corresponding views of the scene is 

obtained.



Specifying The View Coordinates

• For a particular view of a scene 

first we establish viewing-

coordinate system.

• A view-plane (or projection plane) 

is set up perpendicular to the 

viewing z-axis.

• World coordinates are 

transformed to viewing 

coordinates, then viewing 

coordinates are projected onto the 

view plane.

xw

zw

yw

xv

zv

yv

P0=(x0 , y0 , z0)



Specifying The View Coordinates

• To establish the viewing reference frame, we first pick a 

world coordinate position called the view reference 

point.

• This point is the origin of our viewing coordinate 

system. If we choose a point on an object we can think 

of this point as the position where we aim a camera to 

take a picture of the object.



Projection

• General definition

– Transform points in n-space to m-space(m<n)

• In computer graphics

– Map viewing coordinates to 2D screen 

coordinates



Taxonomy of Projections

Planar geometric projection

Parallel Perspective

Orthographic Oblique

Top

Front

Side

Axonometric Cabinet

Cavalier

Other

One-point

Two-point

Three-point



Parallel & Perspective

• Parallel Projection

• Perspective Projection



Parallel Projection

• Center of projection is at infinity 

– Direction of projection (DOP) same for all 

points

View Plane

DOP



Orthographic & Oblique
• Orthographic parallel projection

– the projection is perpendicular to the view 
plane

• Oblique parallel projection
– The projectors are inclined with respect to the 

view plane



Orthographic Projections

• DOP perpendicular to view plane

Front

Top Side



Oblique Projections

• DOP not perpendicular to view plane

Cavalier

(DOP at 45 )  

Cabinet

(DOP at 63.4 )  



Oblique Projections

• DOP not perpendicular to view plane

– Cavalier projection 

– Cabinet projection 
aa 4.63,2tan

aa 45,1tan



Perspective Projection

• Map points onto “view plane” along 

“projectors” emanating from “center of 

projection”(cop)

View Plane
Center of 
Projection



Perspective Projection

• How many vanishing point?



Perspective Projection

• How many vanishing point?

Three-point 
perspective



Perspective Projection

• How many vanishing point?

Three-point 
perspective

Two-point 
perspective



Perspective Projection

• How many vanishing point?

Three-point 
perspective

Two-point 
perspective

One-point 
perspective



2D Clipping



2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

6. Curve Clipping



2D Clipping
1. Introduction:

A scene is made up of a collection of objects specified in world 

coordinates

World Coordinates

* Computer Graphics 2
1
4



2D Clipping

wymin

wxmin wxmax

When we display a scene only those objects within a particular 

window are displayed

Window

wymax

World Coordinates

* Computer Graphics 2
1
5
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2D Clipping

wymin

wxmax
wxmin

CoWmpourteldr GCraopohricdsinates

Because drawing things to a display takes time we clip everything 

outside the window

Window

wymax



* Computer Graphics 2
1
7

1.1 Definition:

– Clipping is the process of determining which elements of 
the picture lie inside the window and are visible.

– By default, the “clip window” is the entire canvas
• not necessary to draw outside the canvas

• for some devices, it is damaging (plotters)

• \

– Sometimes it is convenient to restrict the “clip window” to 
a smaller portion of the canvas

• partial canvas redraw for menus, dialog boxes, other obscuration

2D Clipping



* Computer Graphics 2
1
8

1.2 Shielding:

– Shielding or exterior clipping is the reverse operation of 

clipping where window act as the block used to abstract the 

view.

– Examples

• A multi view window system

• The design of page layouts in advertising or publishing 

applications or for adding labels or design patterns to 

picture.

• Combining graphs, maps o schematics

2D Clipping



2D Clipping

wymax

wymin

wxmin wxmax

Window

World Coordinates

* Computer Graphics 2
1
9
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2D Clipping

1.3 Example:

For the image below consider which lines and points should be kept 

and which ones should be clipped against the clipping window

wymax

wymin

wx
min

Computer Graphicswxmax

Window

P
1

P
6

P
5

P
3

P
7

P10

P
9

P
4

P
2

P
8
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4. Applications:

– Extract part of a defined scene for viewing.

– Drawing operations such as erase, copy, move etc.

– Displaying multi view windows.

– Creating objects using solid modeling techniques.

– Anti-aliasing line segments or object boundaries.

– Identify visible surfaces in 3D views.

2D Clipping
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2D Clipping

1.5 Types of clipping:

– Three types of clipping techniques are used depending 

upon when the clipping operation is performed

a. Analytical clipping

– Clip it before you scan convert it

– used mostly for lines, rectangles, and polygons, where 

clipping algorithms are simple and efficient



* Computer Graphics 22
3

2D Clipping

b. Scissoring

– Clip it during scan conversion

– a brute force technique

• scan convert the primitive, only write pixels if inside the clipping 

region

• easy for thick and filled primitives as part of scan line fill

• if primitive is not much larger than clip region, most pixels will fall 

inside

• can be more efficient than analytical clipping.



* Computer Graphics 22
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2D Clipping

c. Raster Clipping

– Clip it after scan conversion

– render everything onto a temporary canvas and copy the 

clipping region

• wasteful, but simple and easy,

• often used for text



* Computer Graphics 22
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6. Levels of clipping:

– Point Clipping

– Line Clipping

– Polygon Clipping

– Area Clipping

– Text Clipping

– Curve Clipping

2D Clipping



2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

6. Curve Clipping
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Point Clipping

wx ≤ x ≤ wx
min max

&

min
wy ≤ y ≤ wy

max

– otherwise it is clipped

– Simple and Easy

– a point (x,y) is not clipped if:
wymax

wy
min

wxmin wxmax

Window

P
1

P
2

P
5

P
7

P10

P
4

P
8

Clipped

Points Within the Window 
are Not Clipped

P
9

Clipped

Clipped

Clipped



2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

6. Curve Clipping



Line Clipping

– It is Harder than point 
clipping

– We first examine the

end-points of each line to 
see if they are in the 
window or not

• Both endpoints inside, line 
trivially accepted

• One in and one out, line is 
partially inside

• Both outside, might be 
partially inside

• What about trivial cases?

ymin

* Computer Graphics 22
9

ymax

xmin xmax



Line Clipping

Situation Solution Example

Both end-points inside 

the window
Don’t clip

One end-point inside the 

window, one outside
Must clip

Both end-points outside 

the window
Don’t know!

* Computer Graphics 23
0



2D Line Clipping Algorithms

1. Analytical Line Clipping

2. Cohen Sutherland Line Clipping

3. Liang Barsky Line Clipping
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Cohen-Sutherland Line Clipping

– An efficient line clipping 

algorithm

– The key advantage of the 

algorithm is that it vastly 

reduces the number of line 

intersections that must be 

calculated. co-developed

Dr. Ivan E. Sutherland

the

Cohen-Sutherland clipping

algorithm. Sutherland is a

graphics giant and includes

amongst his achievements

the invention of the head  

mounted display.
Cohen is something of a mystery – can  

anybody find out who he was?
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Cohen-Sutherland Line Clipping

– Two phases Algorithm

Phase I: Identification Phase

All line segments fall into one of the following categories

1. Visible: Both endpoints lies inside

2. Invisible: Line completely lies outside

3. Clipping Candidate: A line neither in category 1 or 2

Phase II: Perform Clipping

Compute intersection for all lines that are candidate for 
clipping.



* Computer Graphics 23
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Cohen-Sutherland Line Clipping

Phase I: Identification Phase: World space is divided into regions 

based on the window boundaries

– Each region has a unique four bit region code

– Region codes indicate the position of the regions with respect to the 

window

1001 1000 1010

0001
0000

Window
0010

0101 0100 0110

Top
belo

w
right left

4 3 2 1

Region Code Legend



Cohen-Sutherland Line Clipping

Every end-point is labelled with the appropriate region code

wymax

wy
min

wxmin wxmax

3
P [0001]

P
6
[0000]

P
5

[0000]

P
7

[0001]

P
10

[0100]

P
9

[0000]

P
4
[1000]

Window

8
P [0010]

P
12

[0010]

P
11

[1010]

P
13

[0101]

* Computer Graphics 23
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P
14

[0110]
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Cohen-Sutherland Line Clipping

Visible Lines: Lines completely contained within the window 

boundaries have region code [0000] for both end-points so are not 

clipped

wymax

wy
min

wxmin
Computer Graphicswx

max

3
P [0001]

P
6
[0000]

P
5

[0000]

P
7

[0001]

P
10

[0100]

P
9

[0000]

P
4
[1000]

Window

8
P [0010]

P
12

[0010]

P
11

[1010]

P
13

[0101] P
14

[0110]
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Cohen-Sutherland Line Clipping

Invisible Lines: Any line with a common set bit in the region 

codes of both end-points can be clipped completely

– The AND operation can efficiently check this

– Non Zero means Invisible

wymax

wy
min

wxmin
Computer Graphicswx

max

3
P [0001]

P
6
[0000]

P
5

[0000]

P
7

[0001]

P
10

[0100]

P
9

[0000]

P
4
[1000]

Window

8
P [0010]

P
12

[0010]

P
11

[1010]

P
13

[0101] P
14

[0110]
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Cohen-Sutherland Line Clipping

Clipping Candidates: Lines that cannot be identified as 

completely inside or outside the window may or may not cross 

the window interior. These lines are processed in Phase II.

– If AND operation result in 0 the line is candidate for clipping

wymax

wy
min

wxmin
Computer Graphicswx

max

3
P [0001]

P
6
[0000]

P
5

[0000]

P
7

[0001]

P
10

[0100]

P
9

[0000]

P
4
[1000]

Window

8
P [0010]

P
12

[0010]

P
11

[1010]

P
13

[0101] P
14

[0110]



Cohen-Sutherland Line Clipping

Assigning Codes

– Let point (x,y) is be given

code b
3
b

2
b

1
b

0
:

bit 3 = 1 if wy
max

- y ≤0 

bit 2 = 1 if y - wy
min

≤ 0

max
bit 1 = 1 if wx - x ≤0

bit 0 = 1 if x - wx
min

≤ 0

wy
max

wy
min

wx
min wxmax

P
6
[0000]

P
3
[0001]

P
7
[0001

P
10

[0100]

P
5

[0000]

]

P
9

[0000]

4

Window

P [1000]

8
P [0010]

P
12

[0010]

P
11

[1010]

13

* Computer Graphics 23
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P [0101]
14

P [0110]
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Cohen-Sutherland Clipping Algorithm

Phase II: Clipping Phase: Lines that are in category 3 are now 
processed as follows:

– Compare an end-point outside the window to a boundary 
(choose any order in which to consider boundaries e.g. left, 
right, bottom, top) and determine how much can be 
discarded

– If the remainder of the line is entirely inside or outside the 
window, retain it or clip it respectively

– Otherwise, compare the remainder of the line against the 
other window boundaries

– Continue until the line is either discarded or a segment 
inside the window is found
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Cohen-Sutherland Line Clipping

• Intersection points with the window boundaries are calculated 

using the line-equation parameters

– Consider a line with the end-points (x
1
, y

1
) and (x

2
, y

2
)

– The y-coordinate of an intersection with a vertical window 

boundary can be calculated using:

y = y
1

+ m (x
boundary

- x
1
)

where x
boundary

can be set to either wx
min

or wx
max

– The x-coordinate of an intersection with a horizontal 

window boundary can be calculated using:

x = x
1

+ (y
boundary

- y
1
) / m

where y
boundary

can be set to either wy
min

or wy
max
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Cohen-Sutherland Line Clipping

• We can use the region codes to determine which window 
boundaries should be considered for intersection

– To check if a line crosses a particular boundary we 
compare the appropriate bits in the region codes of its 
end-points

– If one of these is a 1 and the other is a 0 then the line 
crosses the boundary.



Cohen-Sutherland Line Clipping
Example1: Consider the line P

9
to P

10
below

– Start at P
10

– From the region codes 

of the two end-points we 

know the line doesn’t 

cross the left or right 

boundary

– Calculate the intersection

of the line with the bottom boundary

to generate point P
10

’

– The line P
9

to P
10

’ is completely inside the window so is 

retained

x
wy

ma

wy
min

wx
min wxmax

Window

P
10

’ [0000]

P
10

[0100]

P
9

[0000]
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Cohen-Sutherland Line Clipping

Example 2: Consider the line P
3

to P
4

below

– Start at P
4

– From the region codes 

of the two end-points 

we know the line 

crosses the left 

boundary so calculate 

the intersection point to 

generate P
4
’

– The line P
3

to P
4
’ is completely outside the window so is 

clipped

wymax

wymin

wxmin wxmax

4
P ’ [1001]

P
4
[1000]

Window

* Computer Graphics 24
4

3
P [0001]



Cohen-Sutherland Line Clipping

Example 3: Consider the line P
7

to P
8

below

– Start at P
7

– From the two region 

codes of the two 

end-points we know 

the line crosses the 

left boundary so 

calculate the 

intersection point to 

generate P
7
’

wy
max

wy
min

wxmin wxmax

Window

P7’ [0000]

P
7

[0001] P
8

[0010]

P
8
’ [0000]
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Cohen-Sutherland Line Clipping

Example 4: Consider the line P
7
’ to P

8

– Start at P
8

– Calculate the 

intersection with the 

right boundary to 

generate P
8
’

– P
7
’ to P

8
’ is inside 

the window so is 

retained

wy
max

wymin

wxmin wxmax

Window

P
7
’ [0000]

P
7

[0001] P
8

[0010]

P
8
’ [0000]

* Computer Graphics 24
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Cohen-Sutherland Line Clipping

Mid-Point Subdivision Method
– Algorithm

1. Initialise the list of lines to all lines

2. Classify lines as in Phase I

i. Assign 4 point bit codes to both end points a
3
a

2
a

1
a

0
and b

3
b

2
b

1
b

0

ii. If (a
3
a

2
a

1
a

0
= b

3
b

2
b

1
b

0
= 0 )Line in category 1

iii.If (a
3
a

2
a

1
a

0
)AND (b

3
b

2
b

1
b

0
) # 0 ) Line in category 2 iv.

If (a
3
a

2
a

1
a

0
)AND (b

3
b

2
b

1
b

0
) = 0 ) Line in category 3

3. Display all lines from the list in category 1 and remove;

4. Delete all lines from the list in category 2 as they are invisible;

5. Divide all lines of category 3 are into two smaller segments at mid-point

(x
m
,y

m
) where x

m
= (x

1 
+x

2
)/2 and y

m
= (y

1 
+y

2
)/2

6. Remove the original line from list and enter its two newly created 
segments.

7. Repeat step 2-5 until list is null.



Cohen-Sutherland Line Clipping

wymax

wymin

Window

wx
min

Computer Graphics wx
max

* 24
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Cohen-Sutherland Line Clipping

wymax

wx
min

Computer Graphics wx
max

* 24
9

wymin

Window
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Cohen-Sutherland Line Clipping

Mid-Point Subdivision Method

– Integer Version

– Fast as Division by 2 can be performed by simple shift 

right operation

– For NxN max dimension of line number of subdivisions 

required log
2

N.

– Thus a 1024x1024 raster display require just 10 

subdivisions………



2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon / Area Clipping

5. Text Clipping

6. Curve Clipping



Polygon Clipping

• Polygons have a distinct inside and outside…

• Decided by

– Even/Odd

– Winding Number

* Computer Graphics 25
2



Polygon Clipping

• Note the difference between clipping lines and

polygons:

NOTE!

* Computer Graphics 25
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Polygon Clipping

• Some difficulties:

– Maintaining correct inside/outside

– Variable number of vertices

– Handle screen

corners correctly

* Computer Graphics 25
4



Sutherland-Hodgman Area Clipping

• A technique for clipping areas 

developed by Sutherland & 

Hodgman

• Put simply the polygon is clipped 

by comparing it against each 

boundary in turn

Original Area Clip Left Clip Right Clip Top Clip Bottom

Sutherland 

turns up 

again. This 

time with

Gary Hodgman with 

whom he worked at 

the first ever graphics 

company Evans & 

Sutherland

* Computer Graphics 25
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1. Basic Concept:

• Simplify via separation

• Clip whole polygon against one edge

– Repeat with output for other 3 edges

– Similar for 3D

• You can create intermediate vertices that get thrown 

out

Sutherland-Hodgeman Polygon Clipping



Sutherland-Hodgeman Polygon Clipping

• Example

Start Left Right Bottom

Note that the point one of the points added when clipping 

on the right gets removed when we clip with bottom

Top

* Computer Graphics 25
7



2. Algorithm:

Let (P
1
, P

2
,…. P

N
) be the vertex list of the Polygon to be 

clipped and E be the edge of +vely oriented, convex clipping 

window.

We clip each edge of the polygon in turn against each 

window edge E, forming a new polygon whose vertices are 

determined as follows:

Sutherland-Hodgeman Polygon Clipping

* Computer Graphics 25
8
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Four cases

1. Inside: If both P
i-1

and P
i
are to the left of window edge 

vertex then P
i
is placed on the output vertex list.

2. Entering: If P
i-1

is to the right of window edge and P
i 
is to 

the left of window edge vertex then intersection (I) of P
i-1

P
i 

with edge E and P
i
are placed on the output vertex list.

3. Leaving: If P
i-1

is to the left of window edge and P
i
is to the

right of window edge vertex then only intersection (I) of P
i-1

P
i
with edge E is placed on the output vertex list.

4. Outside: If both P
i-1

and P
i
are to the right of window edge

nothing is placed on the output vertex list.

Sutherland-Hodgeman Polygon Clipping



Sutherland-Hodgeman Polygon Clipping

Creating New Vertex List

out □ out 

save nothing 

Outside

(0 output)

P
i-1

P
i

in □ in 

save ending vert

Inside 

(1 output)

Pi-1

P
i

out □ in 

save new clip vert 

and ending vert

Entering 

(2 outputs)

P
i

P
i-1

P
i

in □ out 

save new clip vert

Leaving 

(1 output)

Pi-1

* Computer Graphics 26
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Sutherland-Hodgman Polygon Clipping

• Each example shows the 

point being processed (P) 

and the previous point (S)

• Saved points define area 

clipped to the boundary in 

question

S

Save P

S

Point I

P

S

No Points Saved

P

P I

P

oint P Save

S

I

Save Points I & P
* Computer Graphics 26

1



START

INPUT VERTEX LIST 

(P
1
, P

2
........, P

N
)

IF P
i
P

i+1

INTERSECT E

?

FOR i =1 TO (N-1) DO

COMPUTE I

OUTPUT I IN VERTEX LIST

i
IF P TO LEFT

OF E ?

YES NO

YES

OUTPUT P
i
IN VERTEX LIST

NO

i = i+1

Flow Chart

* Computer Graphics 26
2

Special case for 

first Vertex



Flow Chart
Special case for 

first Vertex
IF P

N
P

0 

INTERSECT

E ?

COMPUTE I

YES

* Computer Graphics 26
3

NO

OUTPUT I IN VERTEX 

LIST

END

YOU CAN ALSO APPEND AN ADDITIONAL VERTEX 

P
N+1

= P
1
AND AVOID SPECIAL CASE FOR FIRST 

VERTEX



Sutherland-Hodgeman Polygon Clipping

Inside/Outside Test:

Let P(x,y) be the polygon vertex which is to be tested against

edge E defined form A(x
1
, y

1
) to B(x

2
, y

2
). Point P is to be said

to the left (inside) of E or AB iff

or C = (x
2
– x

1
) (y – y

1
) – (y

2  
– y

1
)(x – x

1
) > 0

otherwise it is said to be the right/Outside of edge E

* Computer Graphics 26
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Weiler-Atherton Polygon Clipping

• Problem with Sutherland-Hodgeman:

– Concavities can end up linked

• Weiler-Atherton creates separate polygons in such 

cases

Remember  

me?

* Computer Graphics 26
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Weiler-Atherton Polygon Clipping

• Example

add clip pt. 

and end pt.

add end pt. add clip pt. 

cache old dir.

follow clip edge until

* Computer Graphics 26
6

a) new crossing

found

b) reach pt. already 

added



Weiler-Atherton Polygon Clipping

• Example (cont)

continue from 

cached location

add clip pt. 

and end pt.

add clip pt. 

cache dir.

follow clip edge until

a)new crossing 

found

b)reach pt. already 

added

* Computer Graphics 26
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Weiler-Atherton Polygon Clipping

• Example (concluded)

continue from 

cached location

nothing added 

finished

* Computer Graphics 26
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Final result:

Two unconnected

polygons



Weiler-Atherton Polygon Clipping

• Difficulties:

– What if the polygon re-crosses edge?

– How many “cached” crosses?

– Your geometry step must be able to create new polygons
• Instead of 1-in-1-out

* Computer Graphics 26
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Other Area Clipping Concerns

• Clipping concave areas can be a little more tricky as often 
superfluous lines must be removed

• Clipping curves requires more work

– For circles we must find the two intersection points on the window 
boundary

Window WindowWindow Window

* Computer Graphics 27
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2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

6. Curve Clipping



* Computer Graphics 61

Text Clipping

Text clipping relies on the concept of bounding 

rectangle

TYPES

1. All or None String Clipping

2. All or None Character Clipping

3. Component Character Clipping



Text Clipping

1. All or None String Clipping

• In this scheme, if all of the string is inside window, we clip it, 

otherwise the string is discarded. This is the fastest method.

• The procedure is implemented by consider a bounding rectangle 

around the text pattern. The boundary positions are compared to 

the window boundaries. In case of overlapping the string is 

rejected.

STRI NG

1

STRING

3 STRING

STRING

5

STRING
* Computer Graphics 624 4



Text Clipping

2. All or None Character Clipping

• In this scheme, we discard only those characters that are not 

completely inside window.

• Boundary limits of individual characters are compared against 

window. In case of overlapping the character is rejected.

5

STRI NG 

1

STRING

STRING

NG

1

TRING

3 STRING3 STRING
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Text Clipping

3. Component Character Clipping

• Characters are treated like graphic objects.

– Bit Mapped Fonts : Point Clipping

– Outlined Fonts : Line/Curve Clipping

• In case of overlapping the part of the character inside is displayed 

and the outside portion of the character is rejected.

STRI NG

1

STRING

STRING

5

NG

1

TRINGS

3 3STRING

4

STRING
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2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

6. Curve Clipping



Curve Clipping

– Areas with curved boundaries can be clipped with 

methods similar to line and polygon clipping.

– Curve clipping requires more processing as it 

involve non linear equations.

– Bounding Rectangles are used to test for overlap 

with rectangular clip window.

* Computer Graphics 27
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– If bounding rectangle is completely inside the 

object/curve is saved.

– If bounding rectangle is completely outside the 

object/curve is discarded.

Curve Clipping

* Computer Graphics 27
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– If both the above tests fails we use other 

computation saving approaches depending upon 

type of object

• Circle: Use coordinate extent of individual quadrant, 

then octant if required.

• Ellipse: Use coordinate extent of individual quadrant.

• Point: Use point clipping

Curve Clipping

* Computer Graphics 27
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Any Question !


